196 results match your criteria: "Flanders Institute for Biotechnology VIB[Affiliation]"

Systems approaches to study root architecture dynamics.

Front Plant Sci

December 2013

Institute of Science and Technology Austria Klosterneuburg, Austria ; Mendel Centre for Plant Genomics and Proteomics, Masaryk University Brno, Czech Republic.

The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.

View Article and Find Full Text PDF

Modeling framework for the establishment of the apical-basal embryonic axis in plants.

Curr Biol

December 2013

Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; Mendel Centre for Genomics and Proteomics of Plants Systems, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria. Electronic address:

The apical-basal axis of the early plant embryo determines the body plan of the adult organism. To establish a polarized embryonic axis, plants evolved a unique mechanism that involves directional, cell-to-cell transport of the growth regulator auxin. Auxin transport relies on PIN auxin transporters, whose polar subcellular localization determines the flow directionality.

View Article and Find Full Text PDF

Local auxin sources orient the apical-basal axis in Arabidopsis embryos.

Curr Biol

December 2013

Mendel Centre for Genomics and Proteomics of Plants Systems, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium; Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria. Electronic address:

Establishment of the embryonic axis foreshadows the main body axis of adults both in plants and in animals, but underlying mechanisms are considered distinct. Plants utilize directional, cell-to-cell transport of the growth hormone auxin to generate an asymmetric auxin response that specifies the embryonic apical-basal axis. The auxin flow directionality depends on the polarized subcellular localization of PIN-FORMED (PIN) auxin transporters.

View Article and Find Full Text PDF

The API2-MALT1 fusion oncoprotein is created by the recurrent t(11;18)(q21;q21) chromosomal translocation in mucosa-associated lymphoid tissue (MALT) lymphoma. We identified receptor interacting protein-1 (RIP1) as a novel API2-MALT1-associated protein, and demonstrate that RIP1 is required for API2-MALT1 to stimulate canonical nuclear factor kappa B (NF-κB). API2-MALT1 promotes ubiquitination of RIP1 at lysine (K) 377, which is necessary for full NF-κB activation.

View Article and Find Full Text PDF

PIN-FORMED (PIN) proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking.

View Article and Find Full Text PDF

Next-generation (NG) sequencing in a natural population of Populus nigra revealed a mutant with a premature stop codon in the gene encoding hydroxycinnamoyl-CoA : shikimate hydroxycinnamoyl transferase1 (HCT1), an essential enzyme in lignin biosynthesis. The lignin composition of P. nigra trees homozygous for the defective allele was compared with that of heterozygous trees and trees without the defective allele.

View Article and Find Full Text PDF

Current therapeutic approaches under development for Alzheimer disease, including γ-secretase modulating therapy, aim at increasing the production of Aβ(1-38) and Aβ(1-40) at the cost of longer Aβ peptides. Here, we consider the aggregation of Aβ(1-38) and Aβ(1-43) in addition to Aβ(1-40) and Aβ(1-42), in particular their behavior in mixtures representing the complex in vivo Aβ pool. We demonstrate that Aβ(1-38) and Aβ(1-43) aggregate similar to Aβ(1-40) and Aβ(1-42), respectively, but display a variation in the kinetics of assembly and toxicity due to differences in short timescale conformational plasticity.

View Article and Find Full Text PDF

Degradomics reveals that cleavage specificity profiles of caspase-2 and effector caspases are alike.

J Biol Chem

October 2012

Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Ghent University, B-9052 Ghent (Zwijnaarde), Belgium.

Caspase-2 is considered an initiator caspase because its long prodomain contains a CARD domain that allows its recruitment and activation in several complexes by homotypic death domain-fold interactions. Because little is known about the function and specificity of caspase-2 and its physiological substrates, we compared the cleavage specificity profile of recombinant human caspase-2 with those of caspase-3 and -7 by analyzing cell lysates using N-terminal COmbined FRActional DIagonal Chromatography (COFRADIC). Substrate analysis of the 68 cleavage sites identified in 61 proteins revealed that the protease specificities of human caspases-2, -3, and -7 largely overlap, revealing the DEVD↓G consensus cleavage sequence.

View Article and Find Full Text PDF

Background: Text mining tools have gained popularity to process the vast amount of available research articles in the biomedical literature. It is crucial that such tools extract information with a sufficient level of detail to be applicable in real life scenarios. Studies of mining non-causal molecular relations attribute to this goal by formally identifying the relations between genes, promoters, complexes and various other molecular entities found in text.

View Article and Find Full Text PDF

Does Solution Viscosity Scale the Rate of Aggregation of Folded Proteins?

J Phys Chem Lett

May 2012

†Structural Biology Brussels, Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.

Viscosity effects on the kinetics of complex solution processes have proven hard to predict. To test the viscosity effects on protein aggregation, we use the crystallization of the protein glucose isomerase (gluci) as a model and employ scanning confocal and atomic force microscopies at molecular resolution, dynamic and static light scattering, and rheometry. We add glycerol to vary solvent viscosity and demonstrate that glycerol effects on the activation barrier for attachment of molecules to the crystal growth sites are minimal.

View Article and Find Full Text PDF

Small RNAs (20-24 nucleotides long and nonprotein coding) have been increasingly investigated. They are responsible for phenomena described as RNA interference (RNAi), cosuppression, gene silencing, or quelling. Major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biosynthesis.

View Article and Find Full Text PDF

Engagement of tumor necrosis factor receptor 1 signals two diametrically opposed pathways: survival-inflammation and cell death. An additional switch decides, depending on the cellular context, between caspase-dependent apoptosis and RIP kinase (RIPK)-mediated necrosis, also termed necroptosis. We explored the contribution of both cell death pathways in TNF-induced systemic inflammatory response syndrome (SIRS).

View Article and Find Full Text PDF

In this paper, we hypothesize that X chromosome-associated mechanisms, which affect X-linked genes and are behind the immunological advantage of females, may also affect X-linked microRNAs. The human X chromosome contains 10% of all microRNAs detected so far in the human genome. Although the role of most of them has not yet been described, several X chromosome-located microRNAs have important functions in immunity and cancer.

View Article and Find Full Text PDF

Objective: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult-onset neurovascular disorder caused by stereotyped mutations in the NOTCH3 receptor. Elucidation of its pathobiology is still incomplete and remains a challenge, in part because the available preclinical mouse models to date do not reproduce the full spectrum of CADASIL pathology and clinical disease.

Methods And Results: Here, we report a novel knock-in mouse with Arg170Cys substitution in murine Notch3, corresponding to the prevalent Arg169Cys substitution in CADASIL.

View Article and Find Full Text PDF

Interaction patches of procaspase-1 caspase recruitment domains (CARDs) are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor κB signaling.

J Biol Chem

October 2011

Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), B-9052 Ghent (Zwijnaarde), Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent (Zwijnaarde), Belgium. Electronic address:

Protein interaction domains belonging to the death domain-fold superfamily are six-helix bundles that mediate the assembly of large protein complexes involved in apoptotic and inflammatory signaling. Typically, death domains (DDs), a subfamily of the death domain-fold superfamily, harbor six delineated interaction patches on their surfaces that mediate three distinct and conserved types of interaction designated as types I, II, and III. Here, we show that caspase recruitment domains (CARDs), another subfamily of the death domain-fold superfamily, multimerize by employing at least two of the three reported interaction types that were identified in DDs.

View Article and Find Full Text PDF
Article Synopsis
  • DISC1 is a strong candidate gene for schizophrenia, and evidence suggests its interaction partners also play a role in these disorders, prompting this study.
  • Researchers used pooled sample 454 sequencing to analyze genetic variations in DISC1 and ten interaction partners among a population of Swedish individuals, finding a significantly higher mutation burden in schizophrenia patients compared to controls.
  • The majority of rare missense variants were located in intrinsically disordered protein regions, indicating potential new mechanisms behind schizophrenia and underlining the importance of studying patient subgroups.
View Article and Find Full Text PDF

We provide a validated and rapid protocol for the solubilization of amyloid β-peptide (Aβ). This procedure involves sequential solubilization using structure-breaking organic solvents hexafluoroisopropanol and DMSO followed by column purification. The low solubility and tendency of Aβ to aggregate considerably impede the in vitro handling and biophysical or biological investigation of Aβ, despite the interest in this peptide because of its implication in Alzheimer's disease.

View Article and Find Full Text PDF

Using nuclear run-on transcription assays in RNAi studies.

Methods Mol Biol

August 2011

Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium.

RNA interference (RNAi) is a mechanism regulating gene transcript levels either by transcriptional gene silencing or by posttranscriptional gene silencing, which act in the genome maintenance and the regulation of gene expression which is typically inferred from measuring transcript abundance. Nuclear "run-on" (or "run-off") transcription assays have been used to obtain quantitative information about the relative rates of transcription of different genes in nuclei isolated from a particular tissue or organ. Basically, these assays exploit the activity of RNA polymerases to synthesize radiolabeled transcripts that then can be hybridized to filter-bound, cold, excess single-stranded DNA probes representing genes of interest.

View Article and Find Full Text PDF

Sepsis is a serious medical condition characterized by dysregulated systemic inflammatory responses followed by immunosuppression. To study the pathophysiology of sepsis, diverse animal models have been developed. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) is the most frequently used model because it closely resembles the progression and characteristics of human sepsis.

View Article and Find Full Text PDF

The role of G protein-coupled receptors in the pathology of Alzheimer's disease.

Nat Rev Neurosci

February 2011

Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.

G protein-coupled receptors (GPCRs) are involved in numerous key neurotransmitter systems in the brain that are disrupted in Alzheimer's disease (AD). GPCRs also directly influence the amyloid cascade through modulation of the α-, β- and γ-secretases, proteolysis of the amyloid precursor protein (APP), and regulation of amyloid-β degradation. Additionally, amyloid-β has been shown to perturb GPCR function.

View Article and Find Full Text PDF

Oligodendrocyte-specific FADD deletion protects mice from autoimmune-mediated demyelination.

J Immunol

December 2010

Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.

Apoptosis of oligodendrocytes (ODCs), the myelin-producing glial cells in the CNS, plays a central role in demyelinating diseases such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To investigate the mechanism behind ODC apoptosis in EAE, we made use of conditional knockout mice lacking the adaptor protein FADD specifically in ODCs (FADD(ODC-KO)). FADD mediates apoptosis by coupling death receptors with downstream caspase activation.

View Article and Find Full Text PDF

• The seasonal timing of growth events is crucial to tree distribution and conservation. The seasonal growth cycle is strongly adapted to the local climate that is changing because of global warming. We studied bud set as one cornerstone of the seasonal growth cycle in an integrative approach.

View Article and Find Full Text PDF

The amyloid peptides Aβ(40) and Aβ(42) of Alzheimer's disease are thought to contribute differentially to the disease process. Although Aβ(42) seems more pathogenic than Aβ(40), the reason for this is not well understood. We show here that small alterations in the Aβ(42):Aβ(40) ratio dramatically affect the biophysical and biological properties of the Aβ mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo.

View Article and Find Full Text PDF

The formation of primitive (embryonic) blood in vertebrates is mediated by spatio-temporally restricted signaling between different tissue layers. In Xenopus, in which primitive blood originates in the ventral blood island, this involves the secretion of bone morphogenetic protein (BMP) ligands by the ectoderm that signal to the underlying mesoderm during gastrulation. Using novel transgenic reporter lines, we report that the canonical Wnt/β-catenin pathway is also activated in the blood islands in Xenopus.

View Article and Find Full Text PDF

Plant biomass is a renewable and potentially sustainable resource for the production of liquid biofuels and a multitude of bio-based materials. To tailor plants for biofuel production, a powerful gene discovery program targeted to cell wall recalcitrance genes is needed. In parallel, a system is required that reveals the pleiotropic effects of gene modifications and that delivers the fundamental knowledge necessary for successful gene stacking.

View Article and Find Full Text PDF