21 results match your criteria: "First I.P. Pavlov State Medical University of St Petersburg[Affiliation]"

Layer-by-Layer technique as a versatile tool for gene delivery applications.

Expert Opin Drug Deliv

August 2021

Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia.

: Gene therapy is a breakthrough medical field which focuses on the therapeutic delivery of recombinant nucleic acids in order to treat or prevent a broad spectrum of diseases. However, a number of important obstacles remain before its wide introduction into clinical practice can be envisaged. One of the biggest bottlenecks is the lack of efficient and safe delivery technologies, particularly, for distribution.

View Article and Find Full Text PDF

In this study, hybrid composites based on β-alloy Ti-Nb and oxide nanotubes (NTs) have been successfully prepared. NTs of different sizes were grown on Ti-Nb substrates with different Nb contents (5, 25, and 50 wt %) via electrochemical anodization at 30 and 60 V. Scanning electron microscopy imaging revealed that vertically aligned nanotubular structures form on the surface of Ti-Nb alloy substrates and influence Nb content in alloys based on NT length.

View Article and Find Full Text PDF

A highly efficient and safe gene delivery platform based on polyelectrolyte core-shell nanoparticles for hard-to-transfect clinically relevant cell types.

J Mater Chem B

October 2020

11 Center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia and Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, 410012, Russia.

While DNA and messenger RNA (mRNA) based therapies are currently changing the biomedical field, the delivery of genetic materials remains the key problem preventing the wide introduction of these methods into clinical practice. Therefore, the creation of new methods for intracellular gene delivery, particularly to hard-to-transfect, clinically relevant cell populations is a pressing issue. Here, we report on the design of a novel approach to format 50-150 nm calcium carbonate particles in the vaterite state and using them as a template for polymeric core-shell nanoparticles.

View Article and Find Full Text PDF

Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods.

Biomaterials

November 2020

Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246, Martinistraße 52, 20251, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site, Hamburg, Germany. Electronic address:

Besides its broad application in research and biotechnology, genome editing (GE) has great potential for clinical gene therapy, but delivery of GE tools remains a bottleneck. Whereas significant progress has been made in ex vivo GE delivery (e.g.

View Article and Find Full Text PDF

Growth factor incorporation in biomedical constructs for their local delivery enables specific pharmacological effects such as the induction of cell growth and differentiation. This has enabled a promising way to improve the tissue regeneration process. However, it remains challenging to identify an appropriate approach that provides effective growth factor loading into biomedical constructs with their following release kinetics in a prolonged manner.

View Article and Find Full Text PDF

Synthetic organic and inorganic carriers often have limitations associated with problematic targeting ability or non-optimized pharmacokinetics, and, therefore, they have restricted therapeutic potential. Natural drug carriers (e.g.

View Article and Find Full Text PDF

An important area in modern malignant tumor therapy is the optimization of antitumor drugs pharmacokinetics. The use of some antitumor drugs is limited in clinical practice due to their high toxicity. Therefore, the strategy for optimizing the drug pharmacokinetics focuses on the generation of high local concentrations of these drugs in the tumor area with minimal systemic and tissue-specific toxicity.

View Article and Find Full Text PDF

There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof.

View Article and Find Full Text PDF

In the present study, biocomposites based on 3D porous additively manufactured Ti6Al4V (Ti64) scaffolds modified with biocompatible calcium phosphate nanoparticles (CaPNPs) were investigated. Ti64 scaffolds were manufactured via electron beam melting technology using an Arcam machine. Electrophoretic deposition was used to modify the scaffolds with CaPNPs, which were synthesized by precipitation in the presence of polyethyleneimine (PEI).

View Article and Find Full Text PDF

The incorporation of bioactive compounds onto polymer fibrous scaffolds with further control of drug release kinetics is essential to improve the functionality of scaffolds for personalized drug therapy and regenerative medicine. In this study, polymer and hybrid microcapsules were prepared and used as drug carriers, which are further deposited onto polymer microfiber scaffolds [polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and PHB doping with the conductive polyaniline (PANi) of 2 wt % (PHB-PANi)]. The number of immobilized microcapsules decreased with increase in their ζ-potential due to electrostatic repulsion with the negatively charged fiber surface, depending on the polymer used for the scaffold's fabrication.

View Article and Find Full Text PDF

Inhibition of influenza A virus by mixed siRNAs, targeting the PA, NP, and NS genes, delivered by hybrid microcarriers.

Antiviral Res

October 2018

Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation; St. Petersburg State Chemical Pharmaceutical Academy, Prof. Popova str., 14 A, 197376, St. Petersburg, Russian Federation. Electronic address:

In the present study, a highly effective carrier system has been developed for the delivery of antiviral siRNA mixtures. The developed hybrid microcarriers, made of biodegradable polymers and SiO nanostructures, more efficiently mediate cellular uptake of siRNA than commercially available liposome-based reagents and polyethyleneimine (PEI); they also demonstrate low in vitro toxicity and protection of siRNA from RNase degradation. A series of siRNA designs (targeting the most conserved regions of three influenza A virus (IAV) genes: NP, NS, and PA) were screened in vitro using RT-qPCR, ELISA analysis, and hemagglutination assay.

View Article and Find Full Text PDF

Urogenital tuberculosis (TB) often leads to contraction of the bladder, a reduction of the urinary reservoir capacity, and, in the latest stage, to real microcystitis up to full obliteration. Bladder TB Stage 4 is unsuitable for conservative therapy, and cystectomy with subsequent enteroplasty is indicated. In this study, using a model of bladder TB in New Zealand rabbits, the therapeutic efficacy of the interstitial injection of autologous bone-derived mesenchymal stem cells (MSCs) combined with standard anti-TB treatment in the restoration of the bladder function was demonstrated.

View Article and Find Full Text PDF

CRISPR-Cas9 is a revolutionary genome-editing technology that has enormous potential for the treatment of genetic diseases. However, the lack of efficient and safe, non-viral delivery systems has hindered its clinical application. Here, we report on the application of polymeric and hybrid microcarriers, made of degradable polymers such as polypeptides and polysaccharides and modified by silica shell, for delivery of all CRISPR-Cas9 components.

View Article and Find Full Text PDF

In this study, bone scaffolds composed of polycaprolactone (PCL), piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a combination of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and silicate containing hydroxyapatite (PHBV-SiHA) were successfully fabricated by a conventional electrospinning process. The morphological, chemical, wetting and biological properties of the scaffolds were examined. All fabricated scaffolds are composed of randomly oriented fibres with diameters from 800nm to 12μm.

View Article and Find Full Text PDF

The implementation of RNAi technology into the clinical practice has been significantly postponing due to the issues regarding to the delivery of naked siRNA predominantly to target cells. Here we report the approach to enhance the efficiency of siRNA delivery by encapsulating the siRNA into new carrier systems which are obtained via the combination of widely used layer-by-layer technique and in situ modification by sol-gel chemistry. We used three types of siRNAs (NP-717, NP-1155 and NP-1496) in encapsulated form as new therapeutic agents against H1N1 influenza virus infection.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are widely used in cell therapy due to their convenience, multiline differentiation potential, reproducible protocols, and biological properties. The potential of MSCs to impregnate magnetic microcapsules and their possible influence on cell function and ability to response to magnetic field have been explored. Interestingly, the cells suspended in media show much higher ability in internalization of microcapsules, then MSCs adhere into the surface.

View Article and Find Full Text PDF

Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells.

Int J Nanomedicine

September 2016

Department of Cell Culture, Institute of Cytology of the Russian Academy of Sciences (RAS); Department of Radiology, Federal Almazov North-West Medical Research Center; Department of Experimental Medicine, First I.P. Pavlov State Medical University of St Petersburg, St Petersburg, Russia.

In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively.

View Article and Find Full Text PDF

Intracellular redox induced drug release in cancerous and mesenchymal stem cells.

Colloids Surf B Biointerfaces

November 2016

RASA center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk, Russian Federation; RASA center in St.Petersburg, Peter The Great St.Petersburg Polytechnic University, St.Petersburg, Russian Federation; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.

In this report, we investigated intracellular redox induced drug release in cancerous cells and human mesenchymal stem cells (MSCs) as an example of healthy cells using redox-responsive microcapsules with covalently bonded anti-cancer drug (doxorubicin) via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidyl propionate) containing disulfide bond. Such rationally designed capsules with incorporated redox-sensitive cross-linker are capable of controllable Dox release in the presence of glutathione (GSH) due to a thiol-cleavable disulfide bonds. The treatment of human MSCs and human cervical cancer cell line (HeLa) with Dox-conjugated capsules showed that the Dox release was observed only when capsules incubated with HeLa cells which can be induced by high GSH level in cancerous (HeLa) cells.

View Article and Find Full Text PDF

A consensus-based practical and daily guide for the treatment of acne patients.

J Eur Acad Dermatol Venereol

September 2016

Department of Dermato-Cancerology, University of Nantes, Nantes, France.

Background: Many current guidelines provide detailed evidence-based recommendations for acne treatment.

Objective: To create consensus-based, simple, easy-to-use algorithms for clinical acne treatment in daily office-based practice and to provide checklists to assist in determining why a patient may not have responded to treatment and what action to take.

Methods: Existing treatment guidelines and consensus papers were reviewed.

View Article and Find Full Text PDF

Despite the increasing use of amorphous silica nanoparticles (SNPs) in biomedical applications, their toxicity after intravenous administration remains a major concern. We investigated the effects of single 7 mg/kg intravenous infusions of 13 nm SNPs on hemodynamic parameters in rats. Hematological and biochemical parameters were assessed at 7, 30, and 60 d post treatment.

View Article and Find Full Text PDF

The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect.

View Article and Find Full Text PDF