12 results match your criteria: "Federal Waterways Engineering and Research Institute[Affiliation]"

Vessel-generated waves and currents significantly impact coastal and estuarine waterways. In-situ measurements record all relevant physical phenomena that occur under a wide range of conditions and are therefore a valuable resource in the investigation of ship waves. Here we present a comprehensive compound dataset from in-situ ship wave measurement campaigns conducted over several decades in German coastal waterways.

View Article and Find Full Text PDF

Riverbed depth-specific microplastics distribution and potential use as process marker.

Environ Sci Pollut Res Int

July 2024

Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Riverbed sediments have been identified as temporary and long-term accumulation sites for microplastic particles (MPs), but the relocation and retention mechanisms in riverbeds still need to be better understood. In this study, we investigated the depth-specific occurrence and distribution (abundance, type, and size) of MPs in river sediments down to a depth of 100 cm, which had not been previously investigated in riverbeds. In four sediment freeze cores taken for the Main River (Germany), MPs (≥ 100 µm) were detected using two complementary analytical approaches (spectroscopy and thermoanalytical) over the entire depth with an average of 21.

View Article and Find Full Text PDF

The extent of how complex natural microbial communities contribute to metal corrosion is still not fully resolved, especially not for freshwater environments. In order to elucidate the key processes, we investigated rust tubercles forming massively on sheet piles along the river Havel (Germany) applying a complementary set of techniques. In-situ microsensor profiling revealed steep gradients of O , redox potential and pH within the tubercle.

View Article and Find Full Text PDF

Ecosystems are complex structures with interacting abiotic and biotic processes evolving with ongoing succession. However, limited knowledge exists on the very initial phase of ecosystem development and colonization. Here, we report results of a comprehensive ecosystem development monitoring for twelve floodplain pond mesocosms (FPM; 23.

View Article and Find Full Text PDF

Microplastics (MP) as emerging persistent pollutants were found in raw and drinking water worldwide. Since different methods were used, there is an urgent need for harmonized protocols for sampling, sample preparation, and analysis. In this study, a holistic and validated analytical workflow for MP analysis in aqueous matrices down to 5 μm is presented.

View Article and Find Full Text PDF

Bank filtration is considered to improve water quality through microbially mediated degradation of pollutants and is suitable for waterworks to increase their production. In particular, aquifer temperatures and oxygen supply have a great impact on many microbial processes. To investigate the temporal and spatial behavior of selected organic micropollutants during bank filtration in dependence of relevant biogeochemical conditions, we have set up a 2D reactive transport model using MODFLOW and PHT3D under the user interface ORTI3D.

View Article and Find Full Text PDF

Biofilm activities and their interactions with physical, chemical and biological processes are of great importance for a variety of ecosystem functions, impacting hydrogeomorphology, water quality and aquatic ecosystem health. Effective management of water bodies requires advancing our understanding of how flow influences biofilm-bound sediment and ecosystem processes and vice-versa. However, research on this triangle of flow-biofilm-sediment is still at its infancy.

View Article and Find Full Text PDF

Epoxy resin coatings applied to steel constructions for corrosion protection purposes are often exposed to UV-irradiation and weathering during the construction process. Chemical alteration of the hardened coating might lead to i) the release of potentially harmful substances into the environment and ii) delamination of the polyurethane top layer. However, chemical processes and mechanisms occurring on the surfaces of exposed epoxy resin coatings are not fully understood yet.

View Article and Find Full Text PDF

In order to prevent corrosion damage, steel structures need to be protected. Coating systems achieve this by the isolation of the steel from its environment. Common binding agents are epoxide and polyurethane resins which harden by polyaddition reactions.

View Article and Find Full Text PDF

River bank filtration (RBF) is considered to efficiently remove nitrate and trace organic micropollutants (OMP) from polluted surface waters. This is essential for maintaining good groundwater quality and providing high quality drinking water. Predicting the fate of OMP during RBF is difficult as the biogeochemical factors controlling the removal efficiency are not fully understood.

View Article and Find Full Text PDF

Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment.

Mar Pollut Bull

November 2018

Federal Maritime and Hydrographic Agency (BSH), Department of Marine Science, Section of Environmentally Hazardous Substances, Wüstland 2, DE-22589 Hamburg, Germany.

Offshore wind energy is a fast growing sector of renewable energies worldwide. This will change the marine environment and thus, a wide range of environmental impacts of offshore wind farms are subject of current research. Here we present an overview about chemical emissions from corrosion protection systems, discuss their relevance and potential impact to the marine environment, and suggest strategies to reduce their emissions.

View Article and Find Full Text PDF

A novel approach was investigated for the assessment of leaching from a one-component polyurethane (1C-PU) coating used for hydraulic structures using nontarget analysis via LC-QTOF-MS. Leaching behavior of the 1C-PU coating was studied using experiments in which the coating was exposed to water for defined periods (6 h, 24 h, 3 d, 14 d). Three hardening durations for the 1C-PU coating were tested (0 h, 24 h, 14 d) as well as two water matrices (ultrapure water and river water), including a successive water renewal.

View Article and Find Full Text PDF