10 results match your criteria: "Federal Research Center Fundamentals of Biotechnology RAS[Affiliation]"

Biocidal coatings have been used in biomedicine, cosmetology and the food industry. In this article, the coatings are described as being composed of non-stoichiometric polycomplexes, products of electrostatic coupling of two commercial biodegradable ionic polymers, anionic sodium alginate and cationic quaternized hydroxyethyl cellulose ethoxylate. Non-stoichiometric polycomplexes with a 5-fold excess of the cationic polymer were used for immobilizing hydrophobic biocidal 4-hexylresorcinol (HR).

View Article and Find Full Text PDF

Tuberculosis, and especially multidrug-resistant tuberculosis (MDR-TB), is a major global health threat which emphasizes the need to develop new agents to improve and shorten treatment of this difficult-to-manage infectious disease. Among the new agents, macozinone (PBTZ169) is one of the most promising candidates, showing extraordinary potency in vitro and in murine models against drug-susceptible and drug-resistant Mycobacterium tuberculosis. A previous analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed by our group to support phase I clinical trials of PBTZ169.

View Article and Find Full Text PDF

A linear anionic polysaccharide, sodium alginate, electrostatically interacts with a cationic polysaccharide, quaternized hydroxyethyl cellulose ethoxylate, in aqueous solution, thus giving an interpolyelectrolyte complex. Aqueous solutions of the initial polysaccharides and polycomplexes with an excess of the cationic or anionic polymers were used for the stabilization of soil and sand against water erosion. Physicochemical, mechanical and biological properties of the polymers and coatings were characterized by gravimetric analysis, viscosimetry, mechanical strength assessment, cell viability, and cell-mediated degradation with the following main conclusions.

View Article and Find Full Text PDF

A linear polycation, poly(diallyldimethylammonium chloride), electrostatically interacts with anionic latex particles from a carboxylated butadiene-styrene copolymer in aqueous solution thus forming an interpolyelectrolyte complex. A mutual neutralization of oppositely charged latex and polycation groups occurs at = latex/polycation = 50 ratio. At = 27, an ultimate polycation adsorption is reached, resulting in the formation of positive polycomplex particles, while at ˂ 27, two-component systems are formed composed of positive polycomplex particles and free polycation.

View Article and Find Full Text PDF

Various electron microscopy techniques were applied recently to the study of DNA condensation in dormant bacterial cells. Here, we describe, in detail, the preparation of dormant Escherichia coli cells for electron microscopy studies and electron tomography and energy dispersive spectroscopy (EDS) approaches, which were used to reveal the structures of DNA-protein complexes in dormant Escherichia coli cells.

View Article and Find Full Text PDF

One of the adaptive strategies for the constantly changing conditions of the environment utilized in bacterial cells involves the condensation of DNA in complex with the DNA-binding protein, Dps. With the use of electron microscopy and electron tomography, we observed several morphologically different types of DNA condensation in dormant Escherichia coli cells, namely: nanocrystalline, liquid crystalline, and the folded nucleosome-like. We confirmed the presence of both Dps and DNA in all of the ordered structures using EDX analysis.

View Article and Find Full Text PDF

One of the universal mechanisms for the response of Escherichia coli to stress is the increase of the synthesis of specific histone-like proteins that bind the DNA, Dps. As a result, two-and three-dimensional crystalline arrays may be observed in the cytoplasm of starving cells. Here, we determined the conditions to obtain very thin two-dimensional DNA-Dps co-crystals in vitro, and studied their projection structures, using electron microscopy.

View Article and Find Full Text PDF

The emergence of Mycobacterium tuberculosis strains resistant to current first-line antibiotic regimens constitutes a major global health threat. New treatments against multidrug-resistant tuberculosis (MDR-TB) are thus eagerly needed in particular in countries with a high MDR-TB prevalence. In this context, macozinone (PBTZ169), a promising drug candidate with an unique mode of action and highly potent in vitro tuberculocidal properties against MDR Mycobacterium strains, has now reached the clinical phase and has been notably tested in healthy male volunteers in Switzerland.

View Article and Find Full Text PDF

The discovery of thousands of long noncoding RNAs (lncRNAs) in mammals raises a question about their functionality. It has been shown that some of them are involved in post-transcriptional regulation of other RNAs and form inter-molecular duplexes with their targets. Sequence alignment tools have been used for transcriptome-wide prediction of RNA-RNA interactions.

View Article and Find Full Text PDF

Background: The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear.

View Article and Find Full Text PDF