46 results match your criteria: "Federal Research Center ''Kazan Scientific Center of RAS"[Affiliation]"

Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters.

Int J Mol Sci

November 2024

Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, P.O. Box 30, Kazan 420111, Russia.

γ-Aminobutyric acid (GABA) has a significant impact on the functioning of not only the central but also the peripheral part of the nervous system. Recently, various elements of the GABAergic signaling system have been discovered in the area of the neuromuscular junction of mammals. At the same time, the functional activity of membrane-bound GABA transporters (GATs) and their role in neuromuscular transmission have not been identified.

View Article and Find Full Text PDF

Age-related impairment of the diaphragm causes respiratory complications. Neuromuscular junction (NMJ) dysfunction can be one of the triggering events in diaphragm weaknesses in old age. Prominent structural and functional alterations in diaphragm NMJs were described in elderly rodents, but NMJ changes in middle age remain unclear.

View Article and Find Full Text PDF

Protective properties of melanin from lichen Lobaria pulmonaria (L.) HOFFM. In models of oxidative stress in skeletal muscle.

Fitoterapia

September 2024

Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; Kazan State Mediсal University, 49 Butlerova Street, Kazan 420012, Russia. Electronic address:

Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L.

View Article and Find Full Text PDF

Oxysterols in Central and Peripheral Synaptic Communication.

Adv Exp Med Biol

December 2023

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.

Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g.

View Article and Find Full Text PDF

Lipid-dependent regulation of neurotransmitter release from sympathetic nerve endings in mice atria.

Biochim Biophys Acta Biomembr

October 2023

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia. Electronic address:

Neurotransmitter release from sympathetic terminals is a key avenue for heart regulation. Herein, presynaptic exocytotic activity was monitored in mice atrial tissue using a false fluorescent neurotransmitter FFN511, a substrate for monoamine transporters. FFN511 labeling had similarity with tyrosine hydroxylase immunostaining.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage.

View Article and Find Full Text PDF

The photosynthetic apparatus of lichen photobionts has been well-characterized by chlorophyll fluorescence analysis (e.g., by pulse amplitude modulation [PAM]), which provides a proxy of the activity of photosystem II (PSII) and its antenna.

View Article and Find Full Text PDF

Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions.

Life Sci

April 2023

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia. Electronic address:

Aims: Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice.

View Article and Find Full Text PDF

K channels as ROS-dependent modulator of neurotransmitter release at the neuromuscular junctions.

Life Sci

December 2022

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia. Electronic address:

Aims: Neurotransmitter release requires high energy demands, making the nerve terminals metabolically fragile and susceptible to oxidative stress. ATP-sensitive potassium (K) channels can be an important regulator orchestrating the influence of metabolic-related signals on exocytosis. Here, the relevance of ROS in K channel-dependent control of neurotransmitter release at the frog neuromuscular junction was studied.

View Article and Find Full Text PDF

Lichens often grow in microhabitats where they absorb more light than they can use for fixing carbon, and this excess energy can cause the formation of harmful reactive oxygen species (ROS). Lichen mycobionts can reduce ROS formation by synthesizing light-screening pigments such as melanins in the upper cortex, while the photobionts can dissipate excess energy radiationlessly using non-photochemical quenching (NPQ). An inherent problem with using fluorimetry techniques to compare NPQ in pale and melanised thalli is that NPQ is normally measured through a variously pigmented upper cortex.

View Article and Find Full Text PDF

Catecholamine-dependent hyperpolarization of the junctional membrane via β2- adrenoreceptor/G-protein/α2-Na-K-ATPase pathway.

Brain Res

November 2022

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center ''Kazan Scientific Center of RAS", 2/31 Lobachevsky St, box 30, Kazan, RT 420111, Russia.

We investigated the effects of catecholamines, adrenaline and noradrenaline, as well as β-adrenoceptor (AR) modulators on a resting membrane potential at the junctional and extrajunctional regions of mouse fast-twitch Levator auris longus muscle. The aim of the study was to find which AR subtypes, signaling molecules and Na,K-ATPase isoforms are involved in the hyperpolarizing action of catecholamines and whether this action could be accompanied by changes in the pump abundance on the sarcolemma. Adrenaline, noradrenaline and specific β2-AR agonist induced hyperpolarization of both junctional and extrajunctional membrane, but the underlying mechanisms were different.

View Article and Find Full Text PDF

Aims: Neurotransmitter release from the synaptic vesicles can occur through two modes of exocytosis: "full-collapse" or "kiss-and-run". Here we investigated how increasing the nerve activity and pharmacological stimulation of adrenoceptors can influence the mode of exocytosis in the motor nerve terminal.

Methods: Recording of endplate potentials with intracellular microelectrodes was used to estimate acetylcholine release.

View Article and Find Full Text PDF

Frequency-Dependent Engagement of Synaptic Vesicle Pools in the Mice Motor Nerve Terminals.

Cell Mol Neurobiol

March 2023

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, Russia, 420111.

Nerve terminals contain numerous synaptic vesicles (SVs) whose exo-endocytic cycling maintains neurotransmitter release. SVs may have different properties, thereby constituting separate pools. However, behavior of SV pools remains elusive in many synapses.

View Article and Find Full Text PDF

In a viral pandemic, a few important tests are required for successful containment of the virus and reduction in severity of the infection. Among those tests, a test for the neutralizing ability of an antibody is crucial for assessment of population immunity gained through vaccination, and to test therapeutic value of antibodies made to counter the infections. Here, we report a sensitive technique to detect the relative neutralizing strength of various antibodies against the SARS-CoV-2 virus.

View Article and Find Full Text PDF

In a viral pandemic, a few important tests are required for successful containment of the virus and reduction in severity of the infection. Among those tests, a test for the neutralizing ability of an antibody is crucial for assessment of population immunity gained through vaccination, and to test therapeutic value of antibodies made to counter the infections. Here, we report a sensitive technique to detect the relative neutralizing strength of various antibodies against the SARS-CoV-2 virus.

View Article and Find Full Text PDF

Role of quinone reductases in extracellular redox cycling in lichenized ascomycetes.

Fungal Biol

November 2021

School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa. Electronic address:

Our previous work showed that many lichenized Ascomycetes can generate hydroxyl radicals using quinone-based extracellular redox cycling. During cycling, hydroquinones must be formed and subsequently regenerated from quinones using a quinone reductase (QR). However, we also showed that no simple correlation exists between QR activity and rates of hydroxyl radical formation.

View Article and Find Full Text PDF

L-type Ca Channels at Low External Calcium Differentially Regulate Neurotransmitter Release in Proximal-Distal Compartments of the Frog Neuromuscular Junction.

Cell Mol Neurobiol

November 2022

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, Russia, 420111.

L-type Ca channels (LTCCs) are key elements in electromechanical coupling in striated muscles and formation of neuromuscular junctions (NMJs). However, the significance of LTCCs in regulation of neurotransmitter release is still far from understanding. Here, we found that LTCCs can increase evoked neurotransmitter release (especially asynchronous component) and spontaneous exocytosis in two functionally different compartment of the frog NMJ, namely distal and proximal parts.

View Article and Find Full Text PDF

Immune-related oxysterol modulates neuromuscular transmission via non-genomic liver X receptor-dependent mechanism.

Free Radic Biol Med

October 2021

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Department of Normal Physiology, Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia. Electronic address:

Inflammatory reactions induce changes in the neuromuscular system. The mechanisms underlying this link are unclear. Besides cytokines and reactive oxygen species (ROS), production of an antiviral oxysterol 25-hydroxycholesterol (25HC) by immune cells is quickly increased in response to inflammation.

View Article and Find Full Text PDF

Photostable and Small YVO:Yb,Er Upconversion Nanoparticles in Water.

Nanomaterials (Basel)

June 2021

Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA.

In this work, we report a simple method of silica coating of upconversion nanoparticles (UCNPs) to obtain well-crystalline particles that remain small and not agglomerated after high-temperature post-annealing, and produce bright visible emission when pumped with near-infrared light. This enables many interesting biological applications, including high-contrast and deep tissue imaging, quantum sensing and super-resolution microscopy. These VO-based UNCPs are an attractive alternative to fluoride-based crystals for water-based biosensing applications.

View Article and Find Full Text PDF

Aim: Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far.

View Article and Find Full Text PDF

Key Points: The developmental changes of the caval (SVC) and pulmonary vein (PV) myocardium electrophysiology are traced throughout postnatal ontogenesis. The myocardium in SVC as well as in PV demonstrate age-dependent differences in the ability to maintain resting membrane potential, to manifest automaticity in a form of ectopic action potentials in basal condition and in responses to the adrenergic stimulation. Electrophysiological characteristics of two distinct types of thoracic vein myocardium change in an opposite manner during early postnatal ontogenesis with increased proarrhythmicity of pulmonary and decreased automaticity in caval veins.

View Article and Find Full Text PDF

Muscle disuse and denervation leads to muscle atrophy, but underlying mechanisms can be different. Previously, we have found ceramide (Cer) accumulation and lipid raft disruption after acute hindlimb suspension (HS), a model of muscle disuse. Herein, using biochemical and fluorescent approaches the influence of unilateral denervation itself and in combination with short-term HS on membrane-related parameters of rat soleus muscle was studied.

View Article and Find Full Text PDF

Early differences in membrane properties at the neuromuscular junctions of ALS model mice: Effects of 25-hydroxycholesterol.

Life Sci

May 2021

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia. Electronic address:

Aims: Plasma hyperlipidemia is a protective factor in amyotrophic lateral sclerosis (ALS) while cholesterol-lowering drugs aggravate the pathology. We hypothesize that this phenomenon can be linked with membrane lipid alterations in the neuromuscular junctions (NMJs) occurring before motor neuron loss.

Methods: Neurotransmitter release in parallel with lipid membrane properties in diaphragm NMJs of SOD1G93A (mSOD) mice at nine weeks of age (pre-onset stage) were assessed.

View Article and Find Full Text PDF

(formerly ) is a recently defined species of soft rot enterobacteria capable of infecting many plant hosts and damaging different tissues. Complex transcriptional regulation of virulence properties can be expected for such a versatile pathogen. However, the relevant information is available only for related species and is rather limited.

View Article and Find Full Text PDF

Synaptic mechanisms of cadmium neurotoxicity.

Neural Regen Res

September 2021

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.

View Article and Find Full Text PDF