4 results match your criteria: "Federal Research Center "Kazan Scientific Center of the RAS"[Affiliation]"

Chitosan takes second place of the most abundant polysaccharides naturally produced by living organisms. Due to its abundance and unique properties, such as its polycationic nature, ability to form strong elastic porous films, and antibacterial potential, it is widely used in the food industry and biomedicine. However, its low solubility in both water and organic solvents makes its application difficult.

View Article and Find Full Text PDF

The present work is devoted to research on the interaction between carboxymethyl cellulose sodium salt and its derivatives (graft copolymer of carboxymethyl cellulose sodium salt and ,-dimethyl aminoethyl methacrylate) with cysteine protease (ficin). The interaction was studied by FTIR and by flexible molecular docking, which have shown the conjugates' formation with both matrices. The proteolytic activity assay performed with azocasein demonstrated that the specific activities of all immobilized ficin samples are higher in comparison with those of the native enzyme.

View Article and Find Full Text PDF

Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, -(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and -(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively).

View Article and Find Full Text PDF
Article Synopsis
  • Abscisic acid (ABA) is crucial for plant growth and stress response, but its buildup in soil can harm seed germination and root growth.
  • A newly identified strain, sp. P1Y, can use ABA as its sole carbon source and lowers ABA levels in plant roots.
  • Researchers isolated and identified an intermediate product of ABA degradation by this bacterium, determining its chemical structure and concluding the degradation process gradually shortens the acyl part of the ABA molecule.
View Article and Find Full Text PDF