4 results match your criteria: "Faculty of Geosciences Utrecht University Utrecht Netherlands.[Affiliation]"
Mangrove forests are valuable coastal ecosystems that have been shown to persist on muddy intertidal flats through bio-morphodynamic feedbacks. However, the role of coastal conditions on mangrove behavior remains uncertain. This study conducts numerical experiments to systematically explore the effects of tidal range, small wind waves, sediment supply and coastal slope on mangrove development under sea-level rise (SLR).
View Article and Find Full Text PDFJ Geophys Res Earth Surf
January 2020
Department of Physical Geography, Faculty of Geosciences Utrecht University Utrecht Netherlands.
Automatic extraction of channel networks from topography in systems with multiple interconnected channels, like braided rivers and estuaries, remains a major challenge in hydrology and geomorphology. Representing channelized systems as networks provides a mathematical framework for analyzing transport and geomorphology. In this paper, we introduce a mathematically rigorous methodology and software for extracting channel network topology and geometry from digital elevation models (DEMs) and analyze such channel networks in estuaries and braided rivers.
View Article and Find Full Text PDFJ Geophys Res Earth Surf
January 2019
Department of Physical Geography, Faculty of Geosciences Utrecht University Utrecht Netherlands.
Shoal margin collapses of several million cubic meters have occurred in the Western Scheldt estuary, the Netherlands, on average five times a year over the last decades. While these collapses involve significant volumes of material, their effect on the channel-shoal morphology is unknown. We hypothesize that collapses dynamicize the channel-shoal interactions, which could impact the ecological functioning, flood safety, and navigation in the estuary.
View Article and Find Full Text PDFJ Geophys Res Earth Surf
May 2018
Department of Physical Geography, Faculty of Geosciences Utrecht University Utrecht Netherlands.
Empirical parameterizations of the shortwave sand transport that are used in practical engineering models lack the representation of certain processes to accurately predict morphodynamics in shallow water. Therefore, measurements of near-bed velocity and suspended sand concentration, collected during two field campaigns (at the Sand Engine and Ameland, the Netherlands) and one field-scale laboratory experiment (BARDEXII), were here analyzed to study the magnitude and direction of the shortwave sand flux in the shallow surf zone. Shortwave sand fluxes dominated the total sand flux during low-energetic accretive conditions, while the mean cross-shore current (undertow) dominated the total flux during high-energetic erosive conditions.
View Article and Find Full Text PDF