24 results match your criteria: "FRC "Saratov Scientific Centre of the Russian Academy of Sciences"[Affiliation]"

Article Synopsis
  • Achromobacter insolitus LCu2, isolated from alfalfa roots, can degrade 50% of glyphosate and tolerate high levels of copper and glyphosate-copper complexes.
  • Inoculating alfalfa and potato plants with this strain enhanced their growth by 30-50% and reduced glyphosate toxicity compared to non-inoculated plants.
  • The strain's genome indicates it has genes for promoting plant growth, degrading organophosphonates like glyphosate, and tolerating heavy metals, making it a promising candidate for improving crop yields and soil remediation.
View Article and Find Full Text PDF

Basidiomycetes Polysaccharides Regulate Growth and Antioxidant Defense System in Wheat.

Int J Mol Sci

June 2024

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia.

Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants.

View Article and Find Full Text PDF
Article Synopsis
  • * Current methods have limitations in accuracy, prompting research into better techniques, particularly by analyzing speckle patterns in OCT images.
  • * The study found that local brightness fluctuations from wavelet analysis of OCT data improve the differentiation of glioma from healthy brain tissue, suggesting this approach could enhance neurosurgical diagnostics.
View Article and Find Full Text PDF

Correct classification of skin lesions is a key step in skin cancer screening, which requires high accuracy and interpretability. This paper proposes a multimodal method for differentiating various clinical forms of basal cell carcinoma and benign neoplasms that includes machine learning. This study was conducted on 37 neoplasms, including benign neoplasms and five different clinical forms of basal cell carcinoma.

View Article and Find Full Text PDF

(1) Background: The use of electronic cigarettes has become widespread in recent years. The use of e-cigarettes leads to milder pathological conditions compared to traditional cigarette smoking. Nevertheless, e-liquid vaping can cause morphological changes in lung tissue, which affects and impairs gas exchange.

View Article and Find Full Text PDF

Anticancer and Antiphytopathogenic Activity of Fluorinated Isatins and Their Water-Soluble Hydrazone Derivatives.

Int J Mol Sci

October 2023

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia.

A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (), chloro (), or bis-fluoro () substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard's reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells.

View Article and Find Full Text PDF

Ex vivo porcine lung immersed in e-liquid was investigated in-depth using confocal Raman micro-spectroscopy to assess the e-liquid influence on the lung. It was found that lung-related Raman band intensities at 1002, 1548, 1618 and 1655 cm increased after first and second treatments except the surface, which was attributed to the well-known optical clearing (OC) effect due to alveoli filling with e-liquid resulting in light scattering reduction. The autofluorescence enhancement was explained by oxidative stress induced in lung during exposure to e-liquid.

View Article and Find Full Text PDF

The rapid and accurate diagnosis of cancer is an important topic in clinical medicine. In the present work, an innovative method based on laser-induced breakdown spectroscopy (LIBS) combined with machine learning was developed to distinguish and classify different tumor cell lines. The LIBS spectra of cells were first acquired.

View Article and Find Full Text PDF

Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 μJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated.

View Article and Find Full Text PDF

Significance: The clinical use of optical methods for skin imaging is limited by skin strong scattering properties, which reduce image contrast and probing depth. The efficiency of optical methods can be improved by optical clearing (OC). However, for the use of OC agents (OCAs) in a clinical setting, compliance with acceptable non-toxic concentrations is required.

View Article and Find Full Text PDF

Adipose tissue (AT) optical properties for physiological temperatures and in vivo conditions are still insufficiently studied. The AT is composed mainly of packed cells close to spherical shape. It is a possible reason that AT demonstrates a very complicated spatial structure of reflected or transmitted light.

View Article and Find Full Text PDF

This article describes a sapphire cryoprobe as a promising solution to the significant problem of modern cryosurgery that is the monitoring of tissue freezing. This probe consists of a sapphire rod manufactured by the edge-defined film-fed growth technique from Al O melt and optical fibers accommodated inside the rod and connected to the source and the detector. The probe's design enables detection of spatially resolved diffuse reflected intensities of tissue optical response, which are used for the estimation of tissue freezing depth.

View Article and Find Full Text PDF

(DM) is a connective tissue with dense collagen, which is a protective membrane surrounding the human brain. The optical clearing (OC) method was used to make DM more transparent, thereby allowing to increase in-depth investigation by confocal Raman micro-spectroscopy and estimate the diffusivity of 50% glycerol and water migration. Glycerol concentration was obtained, and the diffusion coefficient was calculated, which ranged from 9.

View Article and Find Full Text PDF

In this paper, the measurement and modeling of optical properties in the terahertz (THz) range of adipose tissue and its components with temperature changes were performed. Spectral measurements were made in the frequency range 0.25-1 THz.

View Article and Find Full Text PDF

A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance.

View Article and Find Full Text PDF

To cause plant diseases, phytopathogenic fungi use numerous extracellular enzymes, among which, the phenoloxidases (POs) seem underestimated for the pathogens of non-woody plants. Our study aimed to (1) compare extracellular PO activities (lignin peroxidase, Mn peroxidase, laccase, and tyrosinase) in differentially virulent strains (inhabiting winter rye in a single field) of the phytopathogenic species, ; (2) check whether these activities are responsive to host plant metabolites; and (3) search for correlations between the activities, lignin-decomposing capacity, and virulence. All strains displayed all four enzymatic activities, but their levels and dynamics depended on the particular strain.

View Article and Find Full Text PDF

Optical clearing of the lung tissue aims to make it more transparent to light by minimizing light scattering, thus allowing reconstruction of the three-dimensional structure of the tissue with a much better resolution. This is of great importance for monitoring of viral infection impact on the alveolar structure of the tissue and oxygen transport. Optical clearing agents (OCAs) can provide not only lesser light scattering of tissue components but also may influence the molecular transport function of the alveolar membrane.

View Article and Find Full Text PDF

Light absorption and scattering in biological tissue are significant variables in optical imaging technologies and regulating them enhances optical imaging quality. Optical clearing methods can decrease light scattering and improve optical imaging quality to some extent but owing to their limited efficacy and the potential influence of optical clearing agents on tissue functioning, complementing approaches must be investigated. In this paper, a new strategy of optical clearing proposed as time-dependent or temporal tissue optical clearing (TTOC) is described.

View Article and Find Full Text PDF

The accurate estimation of skin and skull optical properties over a wide wavelength range of laser radiation has great importance in optogenetics and other related applications. In the present work, using the Kubelka-Munk model, finite-element solution of the diffusion equation, inverse adding-doubling (IAD), and Monte-Carlo simulation, we estimated the refractive index, absorption and scattering coefficients, penetration depth, and the optical fluence distribution in rabbit head tissues ex vivo, after dividing the heads into three types of tissues with an average thickness of skin of 1.1 mm, skull of 1 mm, and brain of 3 mm.

View Article and Find Full Text PDF

The main goal of this work was to modify the previously developed blade-type planar structure using plasmonic gold nanostars in order to stimulate photofield emission and provide efficient laser control of the electron current. Localization and enhancement of the field at the tips of gold nanostars provided a significant increase in the tunneling electron current in the experimental sample (both electrical field and photofield emission). Irradiation at a wavelength in the vicinity of the plasmon resonance (red laser) provided a gain in the photoresponse value of up to 5 times compared to irradiation far from the resonance (green laser).

View Article and Find Full Text PDF

A series of biorelevant triethylammonium isatin hydrazones containing various substituents in the aromatic fragment have been synthesized. Their structure and composition were confirmed by NMR- and IR-spectroscopies, mass-spectrometry and elemental analysis. It was found that some representatives show activity against and higher or at the level of norfloxacin, including methicillin-resistant strains.

View Article and Find Full Text PDF

Optical clearing (OC) of adipose tissue has not been studied enough, although it can be promising in medical applications, including surgery and cosmetology, for example, to visualize blood vessels or increase the permeability of tissues to laser beams. The main objective of this work is to develop technology for OC of abdominal adipose tissue in vivo using hyperosmotic optical clearing agents (OCAs). The maximum OC effect (77%) was observed for ex vivo rat adipose tissue samples exposed to OCA on fructose basis for 90 minutes.

View Article and Find Full Text PDF

Cancer remains one of the leading causes of death in the world. For a number of neoplasms, the efficiency of conventional chemo- and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment.

View Article and Find Full Text PDF