4 results match your criteria: "Eye-APC Duke-NUS Medical School[Affiliation]"

The effects of brain-derived neurotrophic factor (BDNF) on retinal ganglion cell (RGC) survival and visual function were assessed in rat and mouse models of optic nerve (ON) crush. ONs were crushed on Day 1, followed by intravitreal injections of a vehicle or BDNF on Days 1 and 8. The spatial frequency threshold was measured using optokinetic tracking on Days 7 and 14.

View Article and Find Full Text PDF

Gene therapies and gene product-based drug candidates for normalizing and preserving tissue functions in animal models of ocular hypertension and glaucoma.

Mol Aspects Med

December 2023

Eye-APC Duke-NUS Medical School, Singapore, 169856, Singapore; Institute of Ophthalmology, University College London, London, W2 1PG, UK; Imperial College of Science and Technology, St. Mary's Campus, London, WC1E 6BT, UK; Department of Pharmacy Sciences, Creighton University, Omaha, NE, 68178, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA; Singapore Eye Research Institute, Singapore, 169856, Singapore; Global Research & Development, Nanoscope Therapeutics Inc., Dallas, TX 75207, USA. Electronic address:

More than 76 million people worldwide are afflicted with the neurodegenerative eye diseases described and grouped together as glaucoma. A common feature amongst the many forms of glaucoma is chronically elevated intraocular pressure (IOP) within the anterior chamber of the eye that physically damages the retina, optic nerve and parts of the brain connected with visual perception. The mediators of the contusing raised IOP responsible for such damage and loss of vision include locally released inflammatory agents, tissue remodeling enzymes and infiltrating immune cells which damage the retinal ganglion cell (RGC) axons and eventually kill a significant number of the RGCs.

View Article and Find Full Text PDF

This review article focuses on the pathogenesis of and genetic defects linked with chronic ocular hypertension (cOHT) and glaucoma. The latter ocular disease constitutes a group of ocular degenerative diseases whose hallmark features are damage to the optic nerve, apoptotic demise of retinal ganglion cells, disturbances within the brain regions involved in visual perception and considerable visual impairment that can lead to blindness. Even though a number of pharmaceuticals, surgical and device-based treatments already exist addressing cOHT associated with the most prevalent of the glaucoma types, primary open-angle glaucoma (POAG), they can be improved upon in terms of superior efficacy with reduced side-effects and with longer duration of activity.

View Article and Find Full Text PDF

Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease.

View Article and Find Full Text PDF