110 results match your criteria: "European Brain Research Institute EBRI "Rita Levi-Montalcini"[Affiliation]"

Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb , has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism.

View Article and Find Full Text PDF

Understanding individual capability to adjust to protracted confinement and isolation may inform adaptive plasticity and disease vulnerability/resilience, and may have long-term implications for operations requiring prolonged presence in distant and restricted environments. Individual coping depends on many different factors encompassing psychological dispositional traits, endocrine reactivity and their underlying molecular mechanisms (e.g.

View Article and Find Full Text PDF

Background: Clinical evidence indicates that patients affected by Alzheimer's Disease (AD) fail to form new memories although their memories for old events are intact. This amnesic pattern depends on the selective vulnerability to AD-neurodegeneration of the hippocampus, the brain region that sustains the formation of new memories, while cortical regions that store remote memories are spared.

Objective: To identify the cellular mechanisms underlying impaired recent memories and intact remote memories in a mouse model of AD.

View Article and Find Full Text PDF

The gut-brain axis is a multimodal communication system along which immune, metabolic, autonomic, endocrine and enteric nervous signals can shape host physiology and determine liability, development and progression of a vast number of human diseases. Here, we broadly discussed the current knowledge about the either beneficial or deleterious impact of dietary fatty acids on microbiota-brain communication (MBC), and the multiple mechanisms by which different types of lipids can modify gut microbial ecosystem and contribute to the pathophysiology of major neuropsychiatric diseases (NPDs), such as schizophrenia (SCZ), depression and autism spectrum disorders (ASD).

View Article and Find Full Text PDF

Nerve growth factor (NGF) is a key mediator of nociception, acting during the development and differentiation of dorsal root ganglion (DRG) neurons, and on adult DRG neuron sensitization to painful stimuli. NGF also has central actions in the brain, where it regulates the phenotypic maintenance of cholinergic neurons. The physiological function of NGF as a pain mediator is altered in patients with Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), caused by the 661C>T transition in the gene, resulting in the R100W missense mutation in mature NGF.

View Article and Find Full Text PDF

The correct morphofunctional shaping of the cerebral cortex requires a continuous interaction between intrinsic (genes/molecules expressed within the tissue) and extrinsic (e.g., neural activity) factors at all developmental stages.

View Article and Find Full Text PDF

Telomere shortening has been supposed to be implicated in both aging and various human diseases especially carcinogenesis process. This phenomenon can lead to a chromosomal instability, contributing to a cell immortalization and tumor induction. In our study, we analyzed the role of telomere shortening in cancer progression, in Tunisian patients with digestive cancer.

View Article and Find Full Text PDF

Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions.

Neuroscience

July 2020

European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy. Electronic address:

To be highly reliable, synaptic transmission needs postsynaptic receptors (Rs) in precise apposition to the presynaptic release sites. At inhibitory synapses, the postsynaptic protein gephyrin self-assembles to form a scaffold that anchors glycine and GABARs to the cytoskeleton, thus ensuring the accurate accumulation of postsynaptic receptors at the right place. This protein undergoes several post-translational modifications which control protein-protein interaction and downstream signaling pathways.

View Article and Find Full Text PDF

Aim: Obesity and low-grade inflammation are associated with an increased risk of hepatocellular carcinoma (HCC), a leading cause of cancer-related death worldwide. The tissue inhibitor of metalloproteinase (TIMP) 3, an endogenous inhibitor of protease activity that represents a key mediator of inflammation, is reduced in inflammatory metabolic disorders and cancer. In contrast, Timp3-deficient mice (Timp3) are highly resistant to developing HCC in response to a diethylnitrosamine (DEN); therefore, we aimed to elucidate the biological role of genetic loss of Timp3 in obesity-related hepatocarcinogenesis.

View Article and Find Full Text PDF

Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission.

Semin Cell Dev Biol

October 2019

Dept. Physiology and Pharmacology, Center for Research in Neurobiology, Sapienza University, Rome, Italy; IRCCS Neuromed, Via Atinese, Pozzilli, Italy. Electronic address:

The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival.

View Article and Find Full Text PDF

Background: A consistent proportion of individuals at risk for Alzheimer's disease show intact cognition regardless of the extensive accumulation of amyloid-β (Aβ) peptide in their brain. Several pieces of evidence indicate that overactivation of brain regions negative for Aβ can compensate for the underactivation of Aβ-positive ones to preserve cognition, but the underlying synaptic changes are still unexplored.

Methods: Using Golgi staining, we investigate how dendritic spines rearrange following contextual fear conditioning (CFC) in the hippocampus and amygdala of presymptomatic Tg2576 mice, a genetic model for Aβ accumulation.

View Article and Find Full Text PDF

MicroRNAs and mild cognitive impairment: A systematic review.

Ageing Res Rev

March 2019

Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Via Dezza 48, 20144, Milano, Italy.

Background: Mild cognitive impairment (MCI) is usually described as an intermediate phase between normal cognition and dementia. Identifying the subjects at a higher risk of progressing from MCI to AD is essential to manage this condition. The diagnosis of MCI is mainly clinical.

View Article and Find Full Text PDF

Painless Nerve Growth Factor: A TrkA biased agonist mediating a broad neuroprotection via its actions on microglia cells.

Pharmacol Res

January 2019

Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.

Nerve Growth Factor (NGF) is a therapeutic candidate for Alzheimer's disease, based on its well known actions on basal forebrain cholinergic neurons. However, because of its pro-nociceptive activity, in current clinical trials NGF has to be administered intraparenchymally into the brain by neurosurgery via cell or gene therapy approaches. To prevent the NGF pain-inducing collateral effects, thus avoiding the necessity for local brain injection, we developed painless NGF (hNGFp), based on the human genetic disease Hereditary Sensory and Autonomic Neuropathy type V (HSAN V).

View Article and Find Full Text PDF

Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD.

View Article and Find Full Text PDF

Role of ASIC1a in Aβ-induced synaptic alterations in the hippocampus.

Pharmacol Res

May 2018

Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy. Electronic address:

Acid-sensing ion channels (ASICs) are widely expressed in the mammalian central nervous system where they play a key role in synaptic transmission and in specific forms of memory. On the other hand, ASICs can be persistently active under pathological conditions contributing to neuronal damage in ischemic stroke, brain trauma, epilepsy and Parkinson's disease. However, to date no experimental evidence has linked ASICs to Alzheimer's disease (AD).

View Article and Find Full Text PDF

The capability of generating neural precursor cells with distinct types of regional identity in vitro has recently opened new opportunities for cell replacement in animal models of neurodegenerative diseases. By manipulating Wnt and BMP signaling, we steered the differentiation of mouse embryonic stem cells (ESCs) toward isocortical or hippocampal molecular identity. These two types of cells showed different degrees of axonal outgrowth and targeted different regions when co-transplanted in healthy or lesioned isocortex or in hippocampus.

View Article and Find Full Text PDF

Besides its involvement in Alzheimer's disease (AD) as precursor of the neurotoxic amyloid peptides, the pathophysiological impact of brain accumulation of amyloid precursor protein (APP) is not yet well understood. Recent studies reported that APP interacts with other membrane proteins, including G protein coupled receptors, affecting their biological functions. Here, we focused on the study of the potential impact of human mutant APP on expression, distribution and activity of type-1 cannabinoid (CB) receptor in the hippocampus of Tg2576 mice, an AD-like mice model.

View Article and Find Full Text PDF

Increasing evidence points to a key role played by epithelial-mesenchymal transition (EMT) in cancer progression and drug resistance. In this study, we used and approaches to investigate whether EMT phenotypes are associated to resistance to target therapy in a non-small cell lung cancer model system harboring activating mutations of the epidermal growth factor receptor. The combination of different analysis techniques allowed us to describe intermediate/hybrid and complete EMT phenotypes respectively in HCC827- and HCC4006-derived drug-resistant human cancer cell lines.

View Article and Find Full Text PDF

Synchronized neuronal activity occurring at different developmental stages in various brain structures represents a hallmark of developmental circuits. This activity, which differs in its specific patterns among animal species may play a crucial role in formation and in shaping neuronal networks. In the rodent hippocampus , the so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal synchrony preceding more organized forms of activity such as oscillations in the theta and gamma frequency range.

View Article and Find Full Text PDF

The muscarinic receptor response to acetylcholine regulates the hippocampal-related learning, memory, neural plasticity and the production and processing of the pro-nerve growth factor (proNGF) by hippocampal cells. The development and progression of diabetes generate a mild cognitive impairment reducing the functions of the septo-hippocampal cholinergic circuitry, depressing neural plasticity and inducing proNGF accumulation in the brain. Here we demonstrate, in a rat model of early type-1 diabetes, that a physical therapy, the electroacupuncture, counteracts the diabetes-induced deleterious effects on hippocampal physiology by ameliorating hippocampal-related memory functions; recovering the impaired long-term potentiation at the dentate gyrus (DG-LTP) and the lowered expression of the vesicular glutamate transporter 1; normalizing the activity-dependent release of proNGF in diabetic rat hippocampus.

View Article and Find Full Text PDF

ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy.

Oncotarget

March 2017

Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.

The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels.

View Article and Find Full Text PDF