4,782 results match your criteria: "Environmental Research Institute[Affiliation]"

The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds.

Commun Earth Environ

January 2025

Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark.

Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular modular system creating micellar carriers for codelivery of doxorubicin and siRNA for potential combined chemotherapy and immunotherapy.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.

View Article and Find Full Text PDF

What Two-Dimensional Electronic Spectroscopy Can Tell Us about Energy Transfer in Dendrimers: Ab Initio Simulations.

J Phys Chem Lett

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.

Two-dimensional (2D) electronic spectra of the phenylene ethynylene dendrimer with 2-ring and 3-ring branches were evaluated by combining the on-the-fly trajectory surface hopping nonadiabatic dynamics and the doorway-window simulation protocol. The ground state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions to the 2D signal were obtained and carefully analyzed. The results demonstrate that the ultrafast intramolecular nonadiabatic excited-state energy transfer (EET) from the 2-ring to the 3-ring units is comprehensively characterized by the SE and ESA signals.

View Article and Find Full Text PDF

Cancer is ranked as the top cause of premature mortality. Volatile organic compounds (VOCs) are produced from catalytic peroxidation by reactive oxygen species (ROS) and have become a highly attractive non-invasive cancer screening approach. For future clinical applications, however, the correlation between cancer hallmarks and cancer-specific VOCs requires further study.

View Article and Find Full Text PDF

Objectives: This qualitative study explored public and prescriber awareness of pharmaceutical pollution in the water environment and eco-directed sustainable prescribing (EDSP) as a mitigation strategy to reduce the environmental impact of prescribing in Scotland.

Design: Focus groups explored prescriber and public perceptions of the topic. Common questions were asked through semistructured facilitation.

View Article and Find Full Text PDF

Enhancing biobutanol production by optimizing acetone-butanol-ethanol fermentation from sorghum grains through strategic immobilization of amylolytic enzymes.

Bioresour Technol

January 2025

Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.

Tannin-containing sorghum grains, suitable for acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum, have required pretreatment to eliminate tannins inhibiting the strain's amylolytic activity. This study investigates biobutanol production enhancement by immobilizing enzymes on polydopamine-functionalized polyethersulfone (PES) membranes with magnetic nanoparticles for Separated Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) processes. After multi-stage hot water treatment, TG3 sorghum (from the third stage) was used, where the enzyme-immobilized PES membrane produced 4.

View Article and Find Full Text PDF

Deciphering spread of quinolone resistance in mariculture ponds: Cross-species and cross-environment transmission of resistome.

J Hazard Mater

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Mariculture is known to harbor antibiotic resistance genes (ARGs), which can be released into marine ecosystems via oceanic farming ponds, posing a public health concern. In this study, metagenomic sequencing was used to decipher the profiles of quinolone-resistant microbiomes and the mechanisms of quinolone resistance in sediment, seawater, and fish gill samples from five mariculture ponds. Residues of both veterinary-specific (enrofloxacin and sarafloxacin) and prohibited quinolones (ofloxacin, ciprofloxacin, pefloxacin, norfloxacin, and lomefloxacin) were detected.

View Article and Find Full Text PDF

The contribution of shipping to the emission of water and air pollutants in the northern Adriatic Sea - current and future scenarios.

Mar Pollut Bull

January 2025

Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy. Electronic address:

Marine pollution management requires identifying all sources of contaminants, yet shipping's role in marine contamination remains unexplored. To address this gap, we investigated shipping contribution to water and air pollutant loads in the Northern Adriatic Sea in 2018 and under two future scenarios. The approach integrated (i) modelled data of shipping-related emissions, (ii) load from tributaries, and (iii) land-based emissions to the atmosphere.

View Article and Find Full Text PDF

Diatomic "catalytic/co-catalytic" Fe/Mo catalysts promote Fenton-like reaction to treat organic wastewater through special interfacial reaction enhancement mechanism.

Water Res

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, China. Electronic address:

The full utilization of active sites and the effective Fe/Fecycling are the key problems that expand the application of iron-based Fenton-like reaction in water purification. In this paper, a novel diatomic Fe/Mo catalyst (Fe/Mo-DACs) was used to enhance the interfacial reaction mechanism with oxidant to achieve more stronger selective degradation of electron-donating organic pollutants. The availability of Fe sites during the activation of peroxymonosulfate (PMS) was enhanced by the adjacent atomic Mo sites, and the resulting special interfacial complex (Fe/Mo-DACs-PMS*) possessed higher activity, stability and selectivity (especially for electron-donating organics).

View Article and Find Full Text PDF

The wastewater from various industries contaminated with heavy metals poses significant environmental challenges. Biosorption has emerged as a widely used method for removing heavy metals from industrial wastewater. Pseudomonas atacamensis M7D1 is known to produce polysaccharides, but the potential of its polysaccharides as an adsorbent for heavy metal removal still needs to be explored.

View Article and Find Full Text PDF

Estimation and evaluation of usage, loss and ecological risk of neonicotinoid pesticides in a large catchment.

J Hazard Mater

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China. Electronic address:

Neonicotinoid pesticides (NNs) are increasingly used in agriculture, which may pose significant threats to aquatic organisms in receiving rivers. However, no studies have explored their entire process from application and transport to receptors within river basins. Here, we estimated the usage and loss of NNs in the Dongting Lake Basin in China using modeling approaches, and assessed NNs-associated aquatic ecological risks.

View Article and Find Full Text PDF

Prediction of nitrate concentration and the impact of land use types on groundwater in the Nansi Lake Basin.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.

Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.

View Article and Find Full Text PDF

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.

View Article and Find Full Text PDF

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China.

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

Optimisation of Dairy Soiled Water as a Novel Duckweed Growth Medium.

Plants (Basel)

January 2025

School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.

As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

This study optimized a one-step precipitation process for manganese recovery from a complex medium-bioleachate obtained from electric arc furnace dust (EAFD). The effects of pH variations and different precipitation agents, including acetone, ethanol, oxalic acid, and ammonium hydroxide, were investigated for manganese recovery. While acetone and ethanol facilitated precipitation, they did not lead to the formation of a specific manganese precipitate.

View Article and Find Full Text PDF

Acidogenic fermentation of Ulva in a fed-batch reactor system: tubular versus foliose biomass.

Enzyme Microb Technol

December 2024

University of Galway, University Road, Galway H91 TK33, Ireland; Science Foundation Ireland MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland.

The present study proposes a biorefinery of the macroalgae Ulva, focusing on evaluating two different morphologies of the species (foliose and tubular) during acidogenic fermentation in fed-batch reactors. Stage 1 of the study evaluates lyophilised foliose and tubular Ulva, whilst Stage 2 analyses the impact of ulvan extraction on volatile fatty acids yield and changes in carbohydrate availability. Acetic, propionic, and butyric acids were produced from each substrate, with peak concentrations of total VFAs recorded at 2179.

View Article and Find Full Text PDF

We evaluate global microplastics particle density distribution using field data from 1972 to 2022, made available by the NOAA (National Oceanic and Atmospheric Administration) NCEI (National Centers for Environmental Information) global marine microplastics database. We resampled the measured microplastics density data from NOAA NCEI into a regularly spaced 1° × 1° grid and applied ordinary block kriging on a 1° × 1° mask map of the global oceans to spatially interpolate the gridded data. Climate data were retrieved from the Climate Data Store of the Copernicus Climate Change Service.

View Article and Find Full Text PDF

Prevalence of antibiotic resistance genes in mining-impacted farmland environments.

Ecotoxicol Environ Saf

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China. Electronic address:

Mining activities produce large quantities of tailings and acid mine drainage, which contain varieties of heavy metals, thereby affecting the downstream farmland soils and crops. Heavy metals could induce antibiotic resistance through co-selection pressure. However, the profiles of antibiotic resistance genes (ARGs) in the mining-affected farmland soils and crops are still unclear.

View Article and Find Full Text PDF

Gender-specific effects of dydrogesterone on zebrafish liver metabolism after long-term exposure.

Aquat Toxicol

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.

Synthetic progestin dydrogesterone is widely used in gynecology and animal husbandry, leading to high environmental detection rates and concentrations. Dydrogesterone influences sex differentiation, gonad development, and spawning in fish. However, its impact on the liver, a vital organ for hormone production and detoxification, remains largely unknown.

View Article and Find Full Text PDF

Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.

View Article and Find Full Text PDF

Several systematic reviews support nature-based interventions (NBIs) as a mechanism of enhancing mental health and wellbeing. However, the available evidence for the effectiveness of these interventions is fragmentary and mixed. The heterogeneity of existing evidence and significant fragmentation of knowledge within the field make it difficult to draw firm conclusions regarding the effectiveness of NBIs.

View Article and Find Full Text PDF