2,262 results match your criteria: "Environmental Research Center[Affiliation]"

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF
Article Synopsis
  • Glacier-fed streams (GFS) are extreme aquatic ecosystems with little nutrients and fluctuating environments, where microorganisms predominantly form biofilms.
  • Researchers analyzed 156 metagenomes from various mountain ranges, revealing thousands of metagenome-assembled genomes (MAGs) of prokaryotes, algae, fungi, and viruses that demonstrate complex biotic interactions in these biofilms.
  • The study found that as glaciers shrink, biofilms transition from using inorganic energy sources to relying more on heterotrophy as algal biomass increases, highlighting the adaptability of microbial life in these unique ecosystems amid climate change.
View Article and Find Full Text PDF

Unlabelled: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The rapid melting of mountain glaciers, a sign of climate change, threatens unique ecosystems known as glacier-fed streams (GFSs), which are primarily dominated by microbial life.
  • Using advanced techniques like metabarcoding and metagenomics, researchers conducted a detailed study of the bacterial microbiome in 152 GFSs across major mountain ranges, revealing distinct taxonomic and functional differences compared to other cryospheric microbiomes.
  • The findings highlight the importance of geographic isolation and environmental factors in shaping bacterial diversity, underscoring the urgent need for further research due to the risks posed by climate change to this unique ecosystem.
View Article and Find Full Text PDF

Biogeochemical patterns in prey species reveal complex mercury exposure pathways from the environment to Aleutian Steller sea lions.

Mar Pollut Bull

December 2024

Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA.

Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points.

View Article and Find Full Text PDF

The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.

View Article and Find Full Text PDF

: Essential oils (EOs) have been exploited by humans for centuries, but many sources remain poorly investigated, mainly due to the low yields associated with conventional extraction. Recently, new techniques have been developed, like solvent-free microwave extraction (SFME), able to enhance efficiency and sustainability. The use of L.

View Article and Find Full Text PDF

The goal of this study was to compare the bioaccumulation of the PCB mixture Aroclor 1254 in zebrafish to cardiac and neurologic outcomes. The establishment of effect concentrations (ECs) for cardiac and neurotoxic effects of PCBs in early life stage fish is challenging due to a lack of measured PCB concentrations in test media (e.g.

View Article and Find Full Text PDF

Under industrial conditions, efficient catalytic oxidation of Chlorinated volatile organic compounds is an important challenge, not only because of the poisonous effect of Chlorinated volatile organic compounds on catalysts, but also because of their high reaction temperature, which has an adverse impact on industrialization. In a recent article ( Ru/CeO ) [1], we developed a strategy for preparing a simple and efficient monolithic catalyst for the catalytic combustion of chlorobenzene. Ru/CeO was loaded on the industrial support cordierite by a Sol-gel method.

View Article and Find Full Text PDF

synthesis of semiconductor nanoparticles in for light-driven ammonia production.

Nanoscale

December 2024

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Ammonia (NH) is an important commodity chemical used as an agricultural fertilizer and hydrogen-storage material. There has recently been much interest in developing an environmentally benign process for NH synthesis. Here, we report enhanced production of ammonia from diazotrophs under light irradiation using hybrid composites of inorganic nanoparticles (NPs) and bacterial cells.

View Article and Find Full Text PDF

Mucosal Exosome Proteomics of Hybrid Grouper ♀ × ♂ Infected by .

Animals (Basel)

November 2024

Health and Environmental Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand.

infection, which causes visceral white spot disease, is a significant and economically devastating disease in aquaculture. In this study, we investigated the impact of bacterial infection on the protein composition of exosomes derived from the surface mucus of the hybrid grouper ♀ × ♂. Two hundred healthy fish were randomly separated into challenge and control groups.

View Article and Find Full Text PDF

Amazônia is a species-rich region of immense importance to Earth's water and carbon cycling. Photosynthesis drives the global carbon cycle, so understanding photosynthetic differences across diverse landscapes is a key task of ecophysiology and ecosystem science. Unfortunately, due to physiological and logistical constraints, ground-based photosynthesis data in Amazônia remains scarce, and the 'traditional' steady-state method (SS) of gas exchange is slow and inefficient.

View Article and Find Full Text PDF

Perfluorohexanesulfonic Acid (PFHxS) Induces Hepatotoxicity through the PPAR Signaling Pathway in Larval Zebrafish ().

Environ Sci Technol

December 2024

Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

In recent years, the industrial substitution of long-chain per- and polyfluoroalkyl substances (PFAS) with short-chain alternatives has become increasingly prevalent, resulting in the widespread environmental detection of perfluorohexanesulfonic acid (PFHxS), a short-chain PFAS. However, there remains limited information about the potential adverse effects of PFHxS at environmental concentrations to wildlife. Here, early life stage zebrafish () were exposed to environmentally relevant concentrations of PFHxS to better characterize the adverse effects of PFHxS on aquatic organisms.

View Article and Find Full Text PDF

Inhalable micro(nano)plastics (MNPs) have emerged as a significant global concern due to their abundance and persistence in the atmosphere. Despite a growing body of literature addressing the analytical requirements of airborne MNPs, the issue of inhalable fractions and analysis of slotted substrates remains unclear. Therefore, the objective of this study is to perform a systematic particle-based analysis and characterization of inhalable microplastics (MPs) collected by a high-volume sampler equipped with a five-stage cascade impactor with a size range of 10 μm to <0.

View Article and Find Full Text PDF

Mobilization of porewater Pb and Zn in response to seasonal wetting and drying within contaminated floodplains.

Sci Total Environ

December 2024

U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Andrew W. Breidenbach Research Center, 26 West Marin Luther King Drive, Cincinnati, OH 45268, USA. Electronic address:

The mobility and bioavailability of metal contaminants such as lead (Pb) and zinc (Zn) is impacted by their interactions with other sediment constituents such as iron (Fe), sulfur (S), and organic matter, which depend on sediment redox conditions. Understanding the role that water level fluctuations have on redox conditions and subsequent impacts on metal mobility is critical for predicting impacts of increased wetting and drying cycles resulting from climate-related changes or management actions. This study measured the sediment-porewater partitioning of Pb and Zn in the Coeur d'Alene River basin downstream of the Bunker Hill Superfund Site under both flooded and seasonally dry conditions.

View Article and Find Full Text PDF

A pioneering longterm experiment on mesophotic macrofouling communities in the North Atlantic.

Commun Biol

December 2024

MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal.

The mesophotic zone represents one of our planet's largest and least explored biomes. An increasing number of studies evidence the importance of macrofouling species in marine ecosystems, but information on these communities and the factors influencing their structures at mesophotic depths remain poor. This lack of understanding limits our ability to predict anthropogenic impacts or conduct restoration operations in the mesophotic and the lower boundary of the euphotic zones.

View Article and Find Full Text PDF

Influence of regulated water discharges on phytoplankton composition and biomass in a subtropical canal.

J Environ Manage

December 2024

Engineering School of Sustainable Infrastructure and the Environment, University of Florida, 365 Weil Hall, Gainesville, FL, USA 32611.

Article Synopsis
  • Phytoplankton composition and biomass were studied in the C-43 Canal of southwest Florida, which receives regulated discharges from Lake Okeechobee, revealing dominance of harmful cyanobacteria during high discharge periods in spring and summer.
  • Conversely, during low discharge periods in mid-summer and autumn, phytoplankton biomass decreased, leading to increased dinoflagellate populations, with notable first records of Dinophysis baltica and Parvodinium goslaviense in Florida.
  • The findings suggest that managing water discharge rates can significantly impact phytoplankton dynamics and help mitigate harmful algal blooms in the canal and its downstream coastal areas.
View Article and Find Full Text PDF
Article Synopsis
  • Bisphenol A (BPA) is a common industrial chemical found in plastics, known for its toxic effects on aquatic life, including cytotoxicity and endocrine disruption.
  • The study developed a new in vitro cell culture system from Daphnia magna embryos to conduct toxicity testing more ethically and efficiently, demonstrating that the cultures could be maintained for two months.
  • Results showed that BPA exposure significantly increased antioxidant activity and gene expression related to stress responses while causing notable DNA damage, establishing the in vitro Daphnia model as a viable alternative to traditional methods in ecotoxicological research.
View Article and Find Full Text PDF

Soil carbon in the world's tidal marshes.

Nat Commun

November 2024

Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Tidal marshes are threatened coastal ecosystems known for their capacity to store large amounts of carbon in their water-logged soils. Accurate quantification and mapping of global tidal marshes soil organic carbon (SOC) stocks is of considerable value to conservation efforts. Here, we used training data from 3710 unique locations, landscape-level environmental drivers and a global tidal marsh extent map to produce a global, spatially explicit map of SOC storage in tidal marshes at 30 m resolution.

View Article and Find Full Text PDF
Article Synopsis
  • Patchy data on litter decomposition in wetlands limits understanding of carbon storage, prompting a global study involving over 180 wetlands across multiple countries and climates.
  • The study found that freshwater wetlands and tidal marshes had more organic matter remaining after decay, indicating better potential for carbon preservation in these areas.
  • Elevated temperatures positively affect the decomposition of resistant organic matter, with projections suggesting an increase in decay rates by 2050; however, the impact varies by ecosystem type and highlights the need to recognize both local and global factors influencing carbon storage.
View Article and Find Full Text PDF

Theoretical investigations of some isolated compounds from as potential antioxidant agents and inhibitors of AGEs.

J Biomol Struct Dyn

November 2024

Laboratory of Applied Organic Chemistry (LAOC), Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria.

In this paper, we have attempted a theoretical calculation of some plant-isolated compounds as potential inhibitors of oxidative stress and Advanced Glycation Endproducts (AGEs). Herein, theoretical reactivity indices based on the CDFT theory were computed to explore the reactivity of five isolated products from Global reactivity indices based on HOMO and LUMO energy such as electronic chemical potential, hardness, electrophilicity and the local reactivity descriptors Parr function, molecular electrostatic potentials(MEP), electrostatic potential (ESP) and thermodynamic parameters for the studied compounds are computed and discussed using DFT method and two functionals B3LYP and CAM-B3LYP with 6-31 G(d,p) basis set. The free radical scavenging activity mechanisms (HAT, SET-PT, and SPLET) of some of the isolated products with DPPH are also presented in this work.

View Article and Find Full Text PDF

Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance.

View Article and Find Full Text PDF