3 results match your criteria: "Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS)[Affiliation]"
Polymers (Basel)
January 2024
Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia.
This research deals with the synthesis of copoly(methylvinyl)(dimethyl)siloxanes by the copolycondensation of dimethyldiethoxy- and methylvinyldimethoxysilane in an active medium, followed by thermal condensation in a vacuum. We achieved a range of copolymers exhibiting finely tuned molecular weights spanning between 1500 and 20,000 with regulated functional methylvinylsiloxane units. Analysis of the microstructure showed that the copolymerization predominantly formed products demonstrating a random distribution of units (R~1).
View Article and Find Full Text PDFPolymers (Basel)
February 2021
Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), 117393 Moscow, Russia.
A series of carbosilane dendrimers of the 4th, 6th, and 7th generations with a terminal trimethylsilylsiloxane layer was synthesized. Theoretical models of these dendrimers were developed, and equilibrium dendrimer conformations obtained via molecular dynamics simulations were in a good agreement with experimental small-angle X-ray scattering (SAXS) data demonstrating molecule monodispersity and an almost spherical shape. It was confirmed that the glass transition temperature is independent of the dendrimer generation, but is greatly affected by the chemical nature of the dendrimer terminal groups.
View Article and Find Full Text PDFMolecules
April 2020
Interfaculty Research Centre on Biomaterials (CEIB), University of Liège, Chemistry Institute, B6C, 11 Allée du 6 août, B-4000 Liege (Sart-Tilman), Belgium.
Self-stabilizing biodegradable microcarriers were produced via an oil/water solvent evaporation technique using amphiphilic chitosan-g-polyester copolymers as a core material in oil phase without the addition of any emulsifier in aqueous phase. The total yield of the copolymer-based microparticles reached up to 79 wt. %, which is comparable to a yield achievable using traditional emulsifiers.
View Article and Find Full Text PDF