1,407 results match your criteria: "Engineering Physics Institute for Biomedicine"; National Research Nuclear University MEPhI[Affiliation]"

Throughout the central nervous system, the spinal cord plays a very important role, namely, transmitting sensory and motor information inwardly so that it can be processed by the brain. There are many different ways this structure can be damaged, such as through traumatic injury or surgery, such as scoliosis correction, for instance. Consequently, damage may be caused to the nervous system as a result of this.

View Article and Find Full Text PDF

Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge.

Nat Methods

July 2024

Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA.

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution.

View Article and Find Full Text PDF

Thioflavin T (ThT) informed microviscosity changes can be used to monitor protein aggregation. Steady-state, time-resolved and lasing spectroscopy were used to detect transient states in α-synuclein - a protein associated with Parkinson's disease. The major focus was on the nucleation phase, where conventional ThT fluorescence assay lacks appropriate sensitivity to detect early stage oligomers.

View Article and Find Full Text PDF

Sophisticated Structural Ceramics Shaped from 3D Printed Hydrogel Preceramic Skeleton.

Adv Mater

August 2024

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

Shaping ceramic materials into sophisticated architecture with 3D hierarchical structure is desirable in multiapplication yet remains challenge due to their brittle and stiff nature. Herein, a new method to achieve ceramic architectures with unsupported and large-spanning structure by shaping vat photopolymerization 3D printed hydrogel preceramic skeleton with unique flexible and deformable character is proposed. Specifically, the present photopolymerizable hydrogel preceramic achieves one stone, two birds: the photosensitive polymer matrix coupled with ceramic nanoparticles for the first shaping by vat photopolymerization 3D printing and the secondary plasticity of the 3D printed ceramic body through flexible shape deformation of hydrogel networks.

View Article and Find Full Text PDF

Precise targeting of specific regions within the central nervous system (CNS) is crucial for both scientific research and gene therapy in the context of brain diseases. Adeno-associated virus 13 (AAV13) is known for its restricted diffusion range within the CNS, making it an ideal choice for precise labeling and administration within small brain regions. However, AAV13 mediates relatively low expression of target genes.

View Article and Find Full Text PDF

Chitosan takes second place of the most abundant polysaccharides naturally produced by living organisms. Due to its abundance and unique properties, such as its polycationic nature, ability to form strong elastic porous films, and antibacterial potential, it is widely used in the food industry and biomedicine. However, its low solubility in both water and organic solvents makes its application difficult.

View Article and Find Full Text PDF

Galactomannans are polysaccharides obtained from legume seed extraction. They present a chemical structure consisting of D-mannose chains linked by glycosidic bonds and galactose branches. The main focus lies in their use as thickeners in the food industry, aimed at improving the dielectric properties of food during heating processes within the radiofrequency and microwave ranges.

View Article and Find Full Text PDF

The mechanical properties of soft gels hold significant relevance in biomedicine and biomaterial design, including the development of tissue engineering constructs and bioequivalents. It is important to adequately characterize the gel's mechanical properties since they play a role both in the overall structural properties of the construct and the physiological responses of cells. The question remains which approach for the mechanical characterization is most suitable for specific biomaterials.

View Article and Find Full Text PDF

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability.

View Article and Find Full Text PDF

Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 40% of approved drugs. However, the reliable acquisition of experimental GPCRs structures is hindered by their lipid-embedded conformations. Traditional protein-ligand interaction models falter in GPCR-drug interactions, caused by limited and low-quality structures.

View Article and Find Full Text PDF

Rapidly damping hydrogels engineered through molecular friction.

Nat Commun

June 2024

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.

Hydrogels capable of swift mechanical energy dissipation hold promise for a range of applications including impact protection, shock absorption, and enhanced damage resistance. Traditional energy absorption in such materials typically relies on viscoelastic mechanisms, involving sacrificial bond breakage, yet often suffers from prolonged recovery times. Here, we introduce a hydrogel designed for friction-based damping.

View Article and Find Full Text PDF
Article Synopsis
  • * They generated over 427 million long-read sequences and found that longer, more accurate sequences yield better transcript detection, while increased read depth enhances quantification.
  • * The study suggests that using reference-based tools works best for well-annotated genomes and recommends incorporating extra data to better identify rare transcripts, providing a benchmark for improving transcriptome analysis techniques in the future.
View Article and Find Full Text PDF

Structural Determinants of Peptide Nanopore Formation.

ACS Nano

June 2024

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States.

We have evolved the nanopore-forming macrolittin peptides from the bee venom peptide melittin using successive generations of synthetic molecular evolution. Despite their sequence similarity to the broadly membrane permeabilizing cytolytic melittin, the macrolittins have potent membrane selectivity. They form nanopores in synthetic bilayers made from 1-palmitoyl, 2-oleoyl-phosphatidylcholine (POPC) at extremely low peptide concentrations and yet have essentially no cytolytic activity against any cell membrane, even at high concentration.

View Article and Find Full Text PDF

Comparison of Lu-octreotate and Lu-octreotide for treatment in human neuroblastoma-bearing mice.

Heliyon

May 2024

Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Background: Patients with high-risk neuroblastoma (NB) have a 5-year event-free survival of less than 50 %, and novel and improved treatment options are needed. Radiolabeled somatostatin analogs (SSTAs) could be a treatment option. The aims of this work were to compare the biodistribution and the therapeutic effects of Lu-octreotate and Lu-octreotide in mice bearing the human CLB-BAR NB cell line, and to evaluate their regulatory effects on apoptosis-related genes.

View Article and Find Full Text PDF

ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system.

Br J Pharmacol

June 2024

Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'.

View Article and Find Full Text PDF
Article Synopsis
  • Surgical resection is the primary treatment for patients with large or symptomatic brain metastases, but there's still a risk of local failure, prompting the development of a prediction tool to identify those at high risk.
  • Data from the AURORA study included 253 patients for training and 99 for external testing, utilizing radiomic features from MRI scans to enhance prediction accuracy.
  • The elastic net regression model combining radiomic and clinical features showed a significant improvement in predicting local failure, with lower risk groups experiencing only 9% failure at 24 months compared to 74% in high-risk groups, suggesting potential for improved patient follow-up and treatment.
View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy.

View Article and Find Full Text PDF

EchoGrid: High-Throughput Acoustic Trapping for Enrichment of Environmental Microplastics.

Anal Chem

June 2024

KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, 171 65 Solna, Sweden.

The health hazards of micro- and nanoplastic contaminants in drinking water has recently emerged as an area of concern to policy makers and industry. Plastic contaminants range in size from micro- (5 mm to 1 μm) to nanoplastics (<1 μm). Microfluidics provides many tools for particle manipulation at the microscale, particularly in diagnostics and biomedicine, but has in general a limited capacity to process large volumes.

View Article and Find Full Text PDF

Objective: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease.

Methods: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy.

View Article and Find Full Text PDF

Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice.

Brain Behav Immun

August 2024

Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland. Electronic address:

Background: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood.

View Article and Find Full Text PDF

Unveiling the rheological and thermal behavior of a novel Salecan and whey protein isolate composite gel.

Int J Biol Macromol

June 2024

Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China. Electronic address:

Article Synopsis
  • The study explores the use of natural polysaccharides Salecan and whey protein isolate to create composite hydrogels, addressing challenges like poor biosafety and high energy consumption associated with chemically crosslinked gels.
  • It investigates the rheological properties of these hydrogels using models such as Power-Law and Herschel-Bulkley to analyze their performance.
  • This research is significant as it is the first to fabricate hydrogels from Salecan and whey protein isolate, highlighting their beneficial qualities like elasticity, thermal stability, and self-recovery for potential applications in food and biomedicine.
View Article and Find Full Text PDF

Microrobotics in endodontics: A perspective.

Int Endod J

July 2024

Biofilm Research Labs, Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Microorganisms are the primary aetiological factor of apical periodontitis. The goal of endodontic treatment is to prevent and eliminate the infection by removing the microorganisms. However, microbial biofilms and the complex root canal anatomy impair the disinfection process.

View Article and Find Full Text PDF

Tuning Surface Organic Structures by Small Gas Molecules through Catassembly and Coassembly.

J Phys Chem Lett

May 2024

Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.

The field of molecular assembly has seen remarkable advancements across various domains, such as materials science, nanotechnology, and biomedicine. Small gas molecules serve as pivotal modulators, capable of altering the architecture of assemblies via tuning a spectrum of intermolecular forces including hydrogen bonding, dipole-dipole interactions, and metal coordination. Surface techniques, notably scanning tunneling microscopy and atomic force microscopy, have proven instrumental in dissecting the structural metamorphosis and characteristic features of these assemblies at an unparalleled single-molecule resolution.

View Article and Find Full Text PDF

Articular cartilage exhibits site-specific biomechanical properties. However, no study has comprehensively characterized site-specific cartilage properties from the same knee joints at different stages of osteoarthritis (OA). Cylindrical osteochondral explants (n = 381) were harvested from donor-matched lateral and medial tibia, lateral and medial femur, patella, and trochlea of cadaveric knees (N = 17).

View Article and Find Full Text PDF