35 results match your criteria: "Emory-UGA Center[Affiliation]"

Unlabelled: Split-virion-inactivated influenza vaccines are formulated based on viral hemagglutinin content. These vaccines also contain the viral neuraminidase (NA) protein, but NA content is not standardized and varies between manufacturers. In clinical studies and animal models, antibodies directed toward NA reduced disease severity and viral load; however, the impact of vaccine-induced NA immunity on airborne transmission of influenza A viruses is not well characterized.

View Article and Find Full Text PDF

Introduction: Swine serve as an important intermediate host species for generating novel influenza A viruses (IAVs) with pandemic potential because of the host's susceptibility to IAVs of swine, human and avian origin. Primary respiratory cell lines are used in IAV research to model the host's upper respiratory tract . However, primary cell lines are limited by their passaging capacity and are time-consuming for use in industry and research pipelines.

View Article and Find Full Text PDF

Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines.

View Article and Find Full Text PDF

Transmission efficiency is a critical factor determining the size of an outbreak of infectious disease. Indeed, the propensity of SARS-CoV-2 to transmit among humans precipitated and continues to sustain the COVID-19 pandemic. Nevertheless, the number of new cases among contacts is highly variable and underlying reasons for wide-ranging transmission outcomes remain unclear.

View Article and Find Full Text PDF

Immune durability and protection against SARS-CoV-2 re-infection in Syrian hamsters.

Emerg Microbes Infect

December 2022

Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA.

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a pandemic. As immunity to endemic human coronaviruses (i.e.

View Article and Find Full Text PDF

Functional antibody-dependent cell mediated cytotoxicity (ADCC) responses to vaccine and circulating influenza strains following vaccination.

Virology

April 2022

Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, United States; Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta, GA, USA. Electronic address:

Novel cell-based assays were developed to assess antibody-dependence cellular cytotoxicity (ADCC) antibodies against both vaccine and a representative circulation strain HA and NA proteins for the 2014-15 influenza season. The four assays using target cells stably expressing one of the four proteins worked well. In pre- and post-vaccine sera from 70 participants in a pre-season vaccine trial, we found ADCC antibodies and a rise in ADCC antibody titer against target cells expressing the 4 proteins but a much higher titer for the vaccine than the circulating HA in both pre-and post-vaccine sera.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a historic pandemic of respiratory disease (coronavirus disease 2019 [COVID-19]), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2 signaling restricts the viral burden in the lung.

View Article and Find Full Text PDF

A reanalysis of SARS-CoV-2 deep sequencing data from donor-recipient pairs indicates that transmission bottlenecks are very narrow (one to three virions).

View Article and Find Full Text PDF

Bivalent vaccination with NA1 and NA2 neuraminidase virus-like particles is protective against challenge with H1N1 and H3N2 influenza A viruses in a murine model.

Virology

October 2021

Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA; Centers for Excellence in Influenza Research and Surveillance, Emory-UGA Center, Atlanta, GA, USA. Electronic address:

Article Synopsis
  • Neuraminidase (NA) is a key protein on influenza A viruses, and specific NA1-based virus-like particles (VLPs) have shown protective effects against certain strains.
  • Researchers produced NA2 VLPs from the A/Perth/16/2009 strain, which induced a strong immune response in mice, providing protection against lethal H3N2 virus but not H1N1.
  • Combination vaccination with both NA1 and NA2 VLPs resulted in effective protection against both H1N1 and H3N2 viruses, highlighting the potential for focusing on anti-NA responses in future flu vaccine development.
View Article and Find Full Text PDF

Viral recombination can generate novel genotypes with unique phenotypic characteristics, including transmissibility and virulence. Although the capacity for recombination among betacoronaviruses is well documented, recombination between strains of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has not been characterized in detail. Here, we present a lightweight approach for detecting genomes that are potentially recombinant.

View Article and Find Full Text PDF

Animal models are frequently used to characterize the within-host dynamics of emerging zoonotic viruses. More recent studies have also deep-sequenced longitudinal viral samples originating from experimental challenges to gain a better understanding of how these viruses may evolve in vivo and between transmission events. These studies have often identified nucleotide variants that can replicate more efficiently within hosts and also transmit more effectively between hosts.

View Article and Find Full Text PDF

Animal models for SARS-CoV-2.

Curr Opin Virol

June 2021

Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States. Electronic address:

Since its first detection in December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread worldwide, resulting in over 79.2 million documented cases in one year. Lack of pre-existing immunity against this newly emerging virus has pushed the urgent development of anti-viral therapeutics and vaccines to reduce the spread of the virus and alleviate disease.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has initiated a global pandemic, and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semipermissive to infection with the USA-WA1/2020 isolate.

View Article and Find Full Text PDF

Reassortment among co-infecting influenza A viruses (IAVs) is an important source of viral diversity and can facilitate expansion into novel host species. Indeed, reassortment played a key role in the evolution of the last three pandemic IAVs. Observed patterns of reassortment within a coinfected host are likely to be shaped by several factors, including viral load, the extent of viral mixing within the host and the stringency of selection.

View Article and Find Full Text PDF

Viral recombination can generate novel genotypes with unique phenotypic characteristics, including transmissibility and virulence. Although the capacity for recombination among betacoronaviruses is well documented, there is limited evidence of recombination between SARS-CoV-2 strains. By identifying the mutations that primarily determine SARS-CoV-2 clade structure, we developed a lightweight approach for detecting recombinant genomes.

View Article and Find Full Text PDF

Efforts to estimate the risk posed by potentially pandemic influenza A viruses (IAV), and to understand the mechanisms governing interspecies transmission, have been hampered by a lack of animal models that yield relevant and statistically robust measures of viral fitness. To address this gap, we monitored several quantitative measures of fitness in a guinea pig model: infectivity, magnitude of replication, kinetics of replication, efficiency of transmission, and kinetics of transmission. With the goal of identifying metrics that distinguish human- and non-human-adapted IAV we compared strains derived from humans to those circulating in swine and canine populations.

View Article and Find Full Text PDF

SARS-CoV-2 variants with spike (S)-protein D614G mutations now predominate globally. We therefore compare the properties of the mutated S protein (S) with the original (S). We report here pseudoviruses carrying S enter ACE2-expressing cells more efficiently than those with S.

View Article and Find Full Text PDF

Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel.

Nat Commun

November 2020

The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Full genome sequences are increasingly used to track the geographic spread and transmission dynamics of viral pathogens. Here, with a focus on Israel, we sequence 212 SARS-CoV-2 sequences and use them to perform a comprehensive analysis to trace the origins and spread of the virus. We find that travelers returning from the United States of America significantly contributed to viral spread in Israel, more than their proportion in incoming infected travelers.

View Article and Find Full Text PDF

Significant progress has already been made in development and testing of SARS-CoV-2 vaccines, and Phase III clinical trials have begun for 6 novel vaccine candidates to date. These Phase III trials seek to demonstrate direct benefits of a vaccine on vaccine recipients. However, vaccination is also known to bring about indirect benefits to a population through the reduction of virus circulation.

View Article and Find Full Text PDF

A universal vaccine against influenza would ideally generate protective immune responses that are not only broadly reactive against multiple influenza strains but also long-lasting. Because long-term serum antibody levels are maintained by bone marrow plasma cells (BMPCs), we investigated the production and maintenance of these cells after influenza vaccination. We found increased numbers of influenza-specific BMPCs 4 weeks after immunization with the seasonal inactivated influenza vaccine, but numbers returned to near their prevaccination levels after 1 year.

View Article and Find Full Text PDF

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2.

View Article and Find Full Text PDF

Infection with a single influenza A virus (IAV) is only rarely sufficient to initiate productive infection. Instead, multiple viral genomes are often required in a given cell. Here, we show that the reliance of IAV on multiple infection can form an important species barrier.

View Article and Find Full Text PDF

Tissue-resident memory T cells (T) in the lungs are pivotal for protection against repeated infection with respiratory viruses. However, the gradual loss of these cells over time and the associated decline in clinical protection represent a serious limit in the development of efficient T cell based vaccines against respiratory pathogens. Here, using an adenovirus expressing influenza nucleoprotein (AdNP), we show that CD8 T in the lungs can be maintained for at least 1 year post vaccination.

View Article and Find Full Text PDF