814 results match your criteria: "Electronics and Telecommunications Research Institute[Affiliation]"

This paper introduces a real-time Driver Monitoring System (DMS) designed to monitor driver behavior while driving, employing facial landmark estimation-based behavior recognition. The system utilizes an infrared (IR) camera to capture and analyze video data. Through facial landmark estimation, crucial information about the driver's head posture and eye area is extracted from the detected facial region, obtained via face detection.

View Article and Find Full Text PDF

In order to overcome the bottleneck between the central processor unit and memory as well as the issue of energy consumption, computing-in-memory (CIM) is becoming more popular as an alternative to the traditional von Neumann structure. However, as artificial intelligence advances, the networks require CIM devices to store billions of parameters in order to handle huge data traffic demands. Monolithic three-dimensional (M3D) stacked ferroelectric thin-film transistors (FeTFTs) are one of the promising techniques for realizing high-density CIM devices that can store billions of parameters.

View Article and Find Full Text PDF

This paper introduces the "SurgT: Surgical Tracking" challenge which was organized in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2022). There were two purposes for the creation of this challenge: (1) the establishment of the first standardized benchmark for the research community to assess soft-tissue trackers; and (2) to encourage the development of unsupervised deep learning methods, given the lack of annotated data in surgery. A dataset of 157 stereo endoscopic videos from 20 clinical cases, along with stereo camera calibration parameters, have been provided.

View Article and Find Full Text PDF

Optical trapping is a state-of-the-art methodology that plays an integral role in manipulating and investigating microscopic objects but faces formidable challenges in multiparticle trapping, flexible manipulation, and high-integration applications. In this study, we propose and demonstrate a switchable optical scheme for trapping microparticles incorporating disparate vortex-pair beams generated by a polarization-multiplexed metasurface. The miniaturized all-dielectric metasurface, which comprises an array of titanium dioxide nanoposts, was manufactured and characterized to provide polarization-tuned two-fold vortex-pair beams.

View Article and Find Full Text PDF

This paper proposes a robust symbol timing synchronization scheme for return link initial access based on the Digital Video Broadcasting-Return Channel via Satellite 2nd generation (DVB-RCS2) system for the Low Earth Orbit (LEO) satellite channel. In most cases, the feedforward estimator structure is considered for implementing Time Division Multiple Access (TDMA) packet demodulators such as the DVB-RCS2 system. More specifically, the Non-Data-Aided (NDA) approach, without using any kind of preamble, pilot, and postamble symbols, is applicable for fine symbol timing synchronization.

View Article and Find Full Text PDF

Effects of Interfacial Electron Transport on Field Electron Emission from Carbon Nanotube Paste Emitters.

ACS Appl Mater Interfaces

October 2023

Intelligent Components and Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.

Field electron emission from carbon nanotubes (CNT) is preceded by the transport of electrons from the cathode metal to emission sites. Specifically, a supporting layer indispensable for adhesion of CNT paste emitters onto the cathode metal would impose a potential barrier, depending on its work function and interfacial electron transport behaviors. In this paper, we investigated the supporting layer of silicon carbide and nickel nanoparticles reacted onto a Kovar alloy (Fe-Ni-Co) cathode substrate, which has been adopted for reliable CNT paste emitters.

View Article and Find Full Text PDF

Construction sites remain highly perilous work environments globally, exposing employees to numerous hazards that can result in severe injuries or fatalities. To resolve this several solutions based on quantitative approaches have been developed. However the wide adoption of preexisting solutions is hindered by lack of accuracy.

View Article and Find Full Text PDF

Compression Performance Analysis of Experimental Holographic Data Coding Systems.

Sensors (Basel)

September 2023

Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea.

It is challenging to find a proper way to compress computer-generated holography (CGH) data owing to their huge data requirements and characteristics. This study proposes CGH data coding systems with high-efficiency video coding (HEVC), three-dimensional extensions of HEVC (3D-HEVC), and video-based point cloud compression (V-PCC) codecs. In the proposed system, we implemented a procedure for codec usage and format conversion and evaluated the objective and subjective results to analyze the performance of the three coding systems.

View Article and Find Full Text PDF

Herein, we fabricated fluorine-containing, polymer-based, flexible neural probes with fluorinated ethylene propylene (FEP) films as the substrates and photo-crosslinkable fluoropolymers as the passivation material. For fabrication, metal-free Au layer formation on the FEP film, the simultaneous photo-adhesion and photo-patterning technique, and the pulsed-laser scanning probe shaping technique were combined, followed by Au electrode surface modification. The resultant probes achieved a charge injection limit equal to 5.

View Article and Find Full Text PDF

Phototherapeutics has shown promise in treating various diseases without surgical or drug interventions. However, it is challenging to use it in inner-body applications due to the limited light penetration depth through the skin. Therefore, we propose an organic light-emitting diode (OLED) catheter as an effective photobiomodulation (PBM) platform useful for tubular organs such as duodenums.

View Article and Find Full Text PDF

Due to the outbreak of the SARS-CoV-2 virus, drug repurposing and Emergency Use Authorization have been proposed to treat the coronavirus disease 2019 (COVID-19) during the pandemic. While the efficiency of the drugs has been discussed, it was identified that certain compounds, such as chloroquine and hydroxychloroquine, cause QT interval prolongation and potential cardiotoxic effects. Drug-induced cardiotoxicity and QT prolongation may lead to life-threatening arrhythmias such as torsades de pointes (TdP), a potentially fatal arrhythmic symptom.

View Article and Find Full Text PDF

Investigating the electrical crosstalk effect between pixels in high-resolution organic light-emitting diode microdisplays.

Sci Rep

August 2023

Department of Electrical Engineering and Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea.

Organic light-emitting diode (OLED) microdisplays have received great attention owing to their excellent performance for augmented reality/virtual reality devices applications. However, high pixel density of OLED microdisplay causes electrical crosstalk, resulting in color distortion. This study investigated the current crosstalk ratio and changes in the color gamut caused by electrical crosstalk between sub-pixels in high-resolution full-color OLED microdisplays.

View Article and Find Full Text PDF

Coarse wavelength division multiplexing (CWDM)-targeted novel silicon (Si)-nanowire-type polarization-diversified optical demultiplexers were numerically analyzed and experimentally verified. The optical demultiplexer comprised a hybrid mode conversion-type polarization splitter rotator (PSR) and a delayed Mach-Zehnder interferometric demultiplexer. Si-nanowire-based devices were fabricated using a commercially available Si photonics foundry process, exhibiting nearly identical spectral responses regardless of the polarization states of the input signals under the PSR.

View Article and Find Full Text PDF

Online Continual Learning in Acoustic Scene Classification: An Empirical Study.

Sensors (Basel)

August 2023

Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Daejeon 34129, Republic of Korea.

Numerous deep learning methods for acoustic scene classification (ASC) have been proposed to improve the classification accuracy of sound events. However, only a few studies have focused on continual learning (CL) wherein a model continually learns to solve issues with task changes. Therefore, in this study, we systematically analyzed the performance of ten recent CL methods to provide guidelines regarding their performances.

View Article and Find Full Text PDF
Article Synopsis
  • The real-time vehicular traffic system manages traffic signals within complex urban networks, tackling the challenges of distributed control for efficient traffic flow.
  • A study focuses on a scenario with four traffic lanes, which allows for simultaneous vehicle movements while maintaining safety.
  • An algorithm is developed to estimate waiting times for vehicles, and its effectiveness is validated through comparisons with real-time traffic data and numerical illustrations.
View Article and Find Full Text PDF

Wireless sensing systems are required for continuous health monitoring and data collection. It allows for patient data collection in real time rather than through time-consuming and expensive hospital or lab visits. This technology employs wearable sensors, signal processing, and wireless data transfer to remotely monitor patients' health.

View Article and Find Full Text PDF

Background: In today's digital economy, enterprises are adopting collaboration software to facilitate digital transformation. However, if employees are not satisfied with the collaboration software, it can hinder enterprises from achieving the expected benefits. Although existing literature has contributed to user satisfaction after the introduction of collaboration software, there are gaps in predicting user satisfaction before its implementation.

View Article and Find Full Text PDF

This paper proposes to remotely estimate a human subject's blood pressure using a millimeter-wave radar system. High blood pressure is a critical health threat that can lead to diseases including heart attacks, strokes, kidney disease, and vision loss. The commonest method of measuring blood pressure is based on a cuff that is contact-based, non-continuous, and cumbersome to wear.

View Article and Find Full Text PDF

Although there are several decision aids for the treatment of localized prostate cancer (PCa), there are limitations in the consistency and certainty of the information provided. We aimed to better understand the treatment decision process and develop a decision-predicting model considering oncologic, demographic, socioeconomic, and geographic factors. Men newly diagnosed with localized PCa between 2010 and 2015 from the Surveillance, Epidemiology, and End Results Prostate with Watchful Waiting database were included (n = 255,837).

View Article and Find Full Text PDF

Wearable computing has garnered a lot of attention due to its various advantages, including automatic recognition and categorization of human actions from sensor data. However, wearable computing environments can be fragile to cyber security attacks since adversaries attempt to block, delete, or intercept the exchanged information via insecure communication channels. In addition to cyber security attacks, wearable sensor devices cannot resist physical threats since they are batched in unattended circumstances.

View Article and Find Full Text PDF

With the evolution in technology, communication based on the voice has gained importance in applications such as online conferencing, online meetings, voice-over internet protocol (VoIP), etc. Limiting factors such as environmental noise, encoding and decoding of the speech signal, and limitations of technology may degrade the quality of the speech signal. Therefore, there is a requirement for continuous quality assessment of the speech signal.

View Article and Find Full Text PDF

Because the position and direction of the human body is not fixed in an actual environment, the incidence direction of the electromagnetic field (EMF) from mobile communication base stations, WiFi access points, broadcasting towers, and other far-field sources is arbitrary. To analyze the overall health effects of radio frequency EMF exposure, the dosimetric assessment for such environmental exposures created from an unspecified number of sources in daily life, along with exposures from specific EMF sources, must be quantified. This study is aimed at numerically evaluating the time-averaged specific absorption rate (SAR) of the human brain for environmental EMF exposure in the frequency range of 50-5800 MHz.

View Article and Find Full Text PDF

In this study, a 50 × 50 mm holographic optical element (HOE) with the property of a spherical mirror was recorded digitally on a silver halide photoplate using a wavefront printing method. It consisted of 51 × 96 hologram spots with each spot measuring 0.98 × 0.

View Article and Find Full Text PDF

In this paper, we compared the characteristics of normally-on/off AlGaN/GaN MISHEMTs passivated by an in situ/ex situ SiN layer. The devices passivated by the in situ SiN layer revealed enhanced DC characteristics, such as the drain current of 595 mA/mm (normally-on) and 175 mA/mm (normally-off) with the high on/off current ratio of ~10, respectively, compared with those of the devices passivated by the ex situ SiN layer. The MISHEMTs passivated by the in situ SiN layer also exhibited a much lower increase of dynamic on-resistance (R) of 4.

View Article and Find Full Text PDF

This study investigates the operating characteristics of AlGaN/GaN high-electron-mobility transistors (HEMTs) by applying HfO as the passivation layer. Before analyzing HEMTs with various passivation structures, modeling parameters were derived from the measured data of fabricated HEMT with SiN passivation to ensure the reliability of the simulation. Subsequently, we proposed new structures by dividing the single SiN passivation into a bilayer (first and second) and applying HfO to the bilayer and first passivation layer only.

View Article and Find Full Text PDF