7 results match your criteria: "Ege University Center for Brain Research and School of Medicine[Affiliation]"
Neuropsychopharmacology
June 2003
Department of Physiology, Ege University Center for Brain Research and School of Medicine, Turkey.
After the recognition of nitric oxide (NO) as a messenger molecule in the nervous system, carbon monoxide (CO) has received attention with similar properties. The present study aims to elucidate the effects of CO on synaptosomal dopamine ((3)H-DA) and glutamate ((3)H-Glu) uptake and on cGMP levels; possible interaction between NO and CO systems was also evaluated. Our results provide evidence for the inhibition of DA and Glu uptake by CO in a time-, dose-, and temperature-dependent manner in rat striatum and hippocampus, respectively; the inhibition observed was sexually dimorphic with more pronounced effects in females.
View Article and Find Full Text PDFInt J Neurosci
July 2002
Ege University Center for Brain Research and School of Medicine, Department of Physiology, Izmir, Turkey.
Systemic kainic acid (KA) administration to rats triggers wet dog shakes (WDS) followed by epileptic seizures. Although WDS are often associated with the occurrence of seizures, we have recently shown that following nitric oxide (NO) synthesis inhibition, the number of WDS decreased; subsequently the onset of seizure activity was shortened, and the number of convulsions was increased. Somatostatin (SS), whose release appears to be controlled by NO, inhibits seizure activity.
View Article and Find Full Text PDFBiosystems
December 2001
Ege University Center for Brain Research and School of Medicine, Department of Physiology, Bornova, 35100, Izmir, Turkey.
Interesting and intriguing questions involve complex systems whose properties cannot be explained fully by reductionist approaches. Last century was dominated by physics, and applying the simple laws of physics to biology appeared to be a practical solution to understand living organisms. However, although some attributes of living organisms involve physico-chemical properties, the genetic program and evolutionary history of complex biological systems make them unique and unpredictable.
View Article and Find Full Text PDFInt J Psychophysiol
October 2001
Ege University Center for Brain Research and School of Medicine, Department of Physiology, Bornova, Izmir, Turkey.
Although males and females are unmistakably different, the recognition of sex as a key variable in science and medicine is considered a revolution in some circles. Sex differences transcend reproductive functions, are evident in the structural and functional organization of the brain, and are reflected in group differences in cognitive abilities and behavior. Males and females have different neural organizational patterns for information processing and different strategies in problem solving.
View Article and Find Full Text PDFBehav Pharmacol
September 2000
Ege University Center for Brain Research and School of Medicine, Department of Physiology, Izmir, Turkey.
Nicotine produces dose-dependent enhancement of performance in an active avoidance test, and also increases the levels of NO2- and NO3-, which are stable metabolites of nitric oxide (NO), in various brain regions of rats. On the basis of these two observations, we hypothesized that the beneficial effect of nicotine on learning could result from increased NO in relevant brain regions. We therefore tested active avoidance performance in rats given L-Nomega-nitroarginine (L-NA) to inhibit NO synthetase (NOS) prior to nicotine administration.
View Article and Find Full Text PDFInt J Neurosci
January 2001
Department of Physiology, Ege University Center for Brain Research and School of Medicine, Bornova, Izmir, Turkey.
Melatonin has been recently shown by various in-vivo and in-vitro studies to exert potent neutralising effects on hydroxyl radicals, stimulate glutathione peroxidase (GSH-Px) activity, and protect catalase (CAT) from the destructive activity of hydroxyl radicals in neural tissue. We aimed to investigate the possible effects of pharmacological dose of melatonin on some of the antioxidant defence systems in an in-vivo study of experimental spinal injury. Seven groups of adult male Sprague Dawley rats were used in the following scheme: Group I: Naive (n = 6), Group II: Lesion (n = 8), Group III: Melatonin (n = 5), Group IV: Melatonin + Lesion (n = 8), Group V: Placebo + Lesion (n = 5), Group VI: Sham operation (n = 5), and Group VII: Placebo (n = 5).
View Article and Find Full Text PDFInt J Neurosci
December 1998
Ege University Center for Brain Research and School of Medicine, Dept. of Physiology, Bornova, Izmir, Turkey.
We have recently reported an effect that shows a sexually dimorphic difference in cognitive style rather than ability. The preparation for potentially producing this proximal perceptual style effect is one where rats are first given 4-trial daily acquisition sessions for 12 days with the platform always in the same position, but sometimes visible (perceptual, "look-out" condition) and sometimes hidden (conceptual, "navigational" condition). On the first, probe trial of the 13th day, the platform's position is shifted to a point very close (proximal) to the rat's starting position, and made visible.
View Article and Find Full Text PDF