247 results match your criteria: "Ecosystems Center[Affiliation]"

Around 50% of humankind relies on groundwater as a source of drinking water. Here we investigate the age, geochemistry, and microbiology of 138 groundwater samples from 95 monitoring wells (<250 m depth) located in 14 aquifers in Canada. The geochemistry and microbiology show consistent trends suggesting large-scale aerobic and anaerobic hydrogen, methane, nitrogen, and sulfur cycling carried out by diverse microbial communities.

View Article and Find Full Text PDF

The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci.

View Article and Find Full Text PDF

Metastasis frequently develops from disseminated cancer cells that remain dormant after the apparently successful treatment of a primary tumour. These cells fluctuate between an immune-evasive quiescent state and a proliferative state liable to immune-mediated elimination. Little is known about the clearing of reawakened metastatic cells and how this process could be therapeutically activated to eliminate residual disease in patients.

View Article and Find Full Text PDF

Increased coastal urbanization worldwide has resulted in increased nitrogen inputs to ecosystems, leading to eutrophication and other negative effects. We assessed δN in the dead-collected shells of three molluscan species in two estuaries in order to evaluate their ability to identify known gradients in wastewater nitrogen input, namely from private septic systems feeding directly into Waquoit Bay and from a groundwater plume reflecting wastewater injection at a municipal treatment plant in West Falmouth Harbor, Massachusetts, USA. Shells of a suspension-feeder (Geukensia demissa), a micro-algal grazer (Littorina littorea), and an omnivore (Nassarius obsoletus) were collected from lower intertidal sediments near the taxon's life habitat.

View Article and Find Full Text PDF

Vegetative cover was mapped annually, 1976-2022, in experimental plots in Great Sippewissett Marsh, Cape Cod, USA, chronically fertilized at different doses, and subject to changes in sea level and other climate-related variables. Dominant species within areas of higher elevation in the plots followed different decadal trajectories: rise in sea level diminished cover of Spartina patens; higher N supplies increased cover of Distichlis spicata. The opportunistic growth response of D.

View Article and Find Full Text PDF

Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios.

Sci Rep

December 2022

Helmholtz Centre for Polar and Marine Research, Wadden Sea Station, Alfred Wegener Institute, Hafenstraße 43, 25992, List/Sylt, Germany.

Article Synopsis
  • Salt marshes play a key role in coastal protection by reducing wave and flow energy, making their resilience against climate change critical.
  • A mesocosm experiment tested the effects of increased temperature and CO2 on two common salt marsh plants, Spartina anglica and Elymus athericus, over 13 weeks.
  • Elymus athericus showed no changes, indicating it may be resistant to climate impacts, while Spartina anglica exhibited some growth enhancements, suggesting that overall, salt marshes are likely to maintain their protective capacity despite future environmental changes.
View Article and Find Full Text PDF

Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long-term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking.

View Article and Find Full Text PDF

Methane supply drives prokaryotic community assembly and networks at cold seeps of the South China Sea.

Mol Ecol

February 2023

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Marine cold seeps are unique chemosynthetic habitats fuelled by deeply sourced hydrocarbon-rich fluids discharged at the seafloor. Through oxidizing methane and other hydrocarbons, microorganisms inhabiting cold seeps supply subsurface-derived energy to higher trophic levels, sustaining highly productive oases of life in the deep sea. Despite the central role of microbiota in mediating biogeochemical cycles, the factors that govern the assembly and network of prokaryotic communities in cold seeps remain poorly understood.

View Article and Find Full Text PDF

Seagrass meadows provide valuable ecosystem services but are fragile and threatened ecosystems all over the world. This review highlights the current advances in seagrass research from Viet Nam. One goal is to support decision makers in developing science-based conservation strategies.

View Article and Find Full Text PDF

Understanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured.

View Article and Find Full Text PDF

Coastal marine macrophytes exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their hosts through metabolisms that are unique to microbial taxa. Here, we characterized the metabolic functions of macrophyte-associated microbial communities using metagenomes collected from 2 species of kelp ( and ) and 3 marine angiosperms (, , and ), including the rhizomes of two surfgrass species ( spp.

View Article and Find Full Text PDF

Unlabelled: Intratumoral heterogeneity and cellular plasticity have emerged as hallmarks of cancer, including pancreatic ductal adenocarcinoma (PDAC). As PDAC portends a dire prognosis, a better understanding of the mechanisms underpinning cellular diversity in PDAC is crucial. Here, we investigated the cellular heterogeneity of PDAC cancer cells across a range of in vitro and in vivo growth conditions using single-cell genomics.

View Article and Find Full Text PDF

We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO ), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO , warming, and decreased precipitation combined because higher water-use efficiency with elevated CO and higher fertility with warming compensate for responses to drought. Response to elevated CO , warming, and increased precipitation combined is additive.

View Article and Find Full Text PDF

Microalgae within the Scenedesmaceae are often distinguished by spines, bristles, and other wall characteristics. We examined the dynamic production and chemical nature of bristles extruded from the poles of Tetradesmus deserticola previously isolated from microbiotic crust. Rapidly growing cells in a liquid growth medium were established in polydimethylsiloxane microfluidic chambers specially designed to maintain aerobic conditions over time within a chamber 6-12 μm deep.

View Article and Find Full Text PDF

Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth's land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes.

View Article and Find Full Text PDF

Plant functional traits is connected with vegetation adaptability to the environment. The trade-off between plant functional traits reflects resource reintegration and acquisition under grazing pressures. We summarized the differences of plant functional traits under grazing disturbance, focused on the linkages between grazing disturbance and plant functional traits.

View Article and Find Full Text PDF

Nitrate (NO) and ammonium (NH) are reactive nitrogen (N forms that can exacerbate eutrophication in coastal regions. NO can be lost to the atmosphere as N gas driven by direct denitrification, coupled nitrification-denitrification and annamox or retained within the ecosystems through conversion of NO to NH via dissimilatory nitrate reduction to ammonium (DNRA). Denitrification and DNRA are competitive pathways and hence it is critical to evaluate their functional biogeochemical role.

View Article and Find Full Text PDF

We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how "explicitly representing grazers" vs. "having grazer effects implicitly aggregated in with other biogeochemical processes in the model" alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated.

View Article and Find Full Text PDF

The management of biological invasions is a worldwide conservation priority. Unfortunately, decision-making on optimal invasion management can be impeded by lack of information about the biological processes that determine invader success (i.e.

View Article and Find Full Text PDF

The effect of climate change on phenology and growth is less understood for belowground plant tissues than for aboveground plant tissues, particularly in high-latitude regions. Ecotypes within a species adapted to a locality may display different responses to climate change. We established two common garden plots in the Arctic tundra north of the Brooks Range in northern Alaska.

View Article and Find Full Text PDF

Chromosomal instability (CIN) and epigenetic alterations have been implicated in tumor progression and metastasis; yet how these two hallmarks of cancer are related remains poorly understood. By integrating genetic, epigenetic, and functional analyses at the single cell level, we show that progression of uveal melanoma (UM), the most common intraocular primary cancer in adults, is driven by loss of Polycomb Repressive Complex 1 (PRC1) in a subpopulation of tumor cells. This leads to transcriptional de-repression of PRC1-target genes and mitotic chromosome segregation errors.

View Article and Find Full Text PDF

Terrestrial ecosystems are an important carbon store, and this carbon is vulnerable to microbial degradation with climate warming. After 30 years of experimental warming, carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, as was the warming treatment effect.

View Article and Find Full Text PDF