5 results match your criteria: "Ecole Supérieure Polytechnique de l'Université Cheikh Anta Diop (UCAD)[Affiliation]"

Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model.

Trop Med Infect Dis

June 2023

Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), Sorbonne Université, IRD, CNRS, MNHN, 75005 Paris, France.

On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP's community-based vector-borne disease model, TRIeste (VECTRI).

View Article and Find Full Text PDF

Malaria in Senegal: Recent and Future Changes Based on Bias-Corrected CMIP6 Simulations.

Trop Med Infect Dis

November 2022

Laboratoire de Physique de l'Atmosphère et de l'Océan-Siméon Fongang, Ecole Supérieure Polytechnique de l'Université Cheikh Anta Diop (UCAD), BP 5085, Dakar-Fann, Dakar 10700, Senegal.

Malaria is a constant reminder of the climate change impacts on health. Many studies have investigated the influence of climatic parameters on aspects of malaria transmission. Climate conditions can modulate malaria transmission through increased temperature, which reduces the duration of the parasite's reproductive cycle inside the mosquito.

View Article and Find Full Text PDF

The Sahelian zone of Senegal experienced heat waves in the previous decades, such as 2013, 2016 and 2018 that were characterised by temperatures exceeding 45°C for up to 3 successive days. The health impacts of these heat waves are not yet analysed in Senegal although their negative effects have been shown in many countries. This study analyses the health impacts of observed extreme temperatures in the Sahelian zone of the country, focusing on morbidity and mortality by combining data from station observation, climate model projections, and household survey to investigate heat wave detection, occurrence of climate-sensitive diseases and risk factors for exposure.

View Article and Find Full Text PDF

The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal.

View Article and Find Full Text PDF

The aim of this work, undertaken in the framework of QWeCI (Quantifying Weather and Climate Impacts on health in the developing countries) project, is to study how climate variability could influence malaria seasonal incidence. It will also assess the evolution of vector-borne diseases such as malaria by simulation analysis of climate models according to various climate scenarios for the next years. Climate variability seems to be determinant for the risk of malaria development (Freeman and Bradley, 1996 [1], Lindsay and Birley, 1996 [2], Kuhn et al.

View Article and Find Full Text PDF