805 results match your criteria: "Ecole Centrale de Lyon-Université de Lyon[Affiliation]"

Binaural speech intelligibility in rooms is a complex process that is affected by many factors including room acoustics, hearing loss, and hearing aid (HA) signal processing. Intelligibility is evaluated in this paper for a simulated room combined with a simulated hearing aid. The test conditions comprise three spatial configurations of the speech and noise sources, simulated anechoic and concert hall acoustics, three amounts of multitalker babble interference, the hearing status of the listeners, and three degrees of simulated HA processing provided to compensate for the noise and/or hearing loss.

View Article and Find Full Text PDF

Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.

View Article and Find Full Text PDF

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

Data on full stationary wave-field measurement of a suspended steel plate punctually loaded.

Data Brief

February 2025

Institut Camille Jordan, UMR-CNRS 5208, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134, Écully, France.

The dataset presented contains the experimental structural response, in the frequency domain, of a suspended steel plate to a point force excitation. The plate is excited by a mechanical point force generated by a Brüel & kJær shaker with a white noise signal input from 3.125 Hz to 2000 Hz.

View Article and Find Full Text PDF

The degradation of plastic waste is a major research challenge due to the adverse impacts of microplastic weathering on the environment and ecosystems. As a major source of plastic contamination comes from urban hydrosystems, studying MP degradation prior to their environmental dissemination is crucial. Through a combination of field sampling and laboratory experiments, this study provides a thorough statistical degradation comparison analysis between polyethylene in situ environmentally aged microplastics and artificially aged films.

View Article and Find Full Text PDF

Dual functionalization of carboxymethyl cellulose and alginate via Passerini three-component reaction to graft two hydrophobic moieties: Toward modular thin films.

Carbohydr Polym

March 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:

Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).

View Article and Find Full Text PDF

Unit Load of Abrasive Grains in the Machining Zone During Microfinishing with Abrasive Films.

Materials (Basel)

December 2024

Laboratoire de Tribologie et Dynamique des Systemes (LTDS), Ecole Centrale de Lyon, Centre National de la Recherche Scientifique, 69134 Lyon, France.

This work investigates the contact between abrasive particles and workpieces in microfinishing processes with special consideration given to the determination of unit force, unit pressure, and grain, the forces exerted by individual abrasive grains. A detailed methodology was established for measuring the contact area, penetration depth, and circumferences of grain imprints at depths corresponding to multiples of the total height of the abrasive film, represented by the parameter . The following depths were analyzed: 0.

View Article and Find Full Text PDF

Synchrotron microbeam radiotherapy (MRT), which has entered the clinical transfer phase, requires the development of appropriate quality assurance (QA) tools due to very high dose rates and spatial hyperfractionation. A microstrip plastic scintillating detector system with associated modules was proposed in the context of real-time MRT QA. A prototype of such a system with 105 scintillating microstrips was developed and tested under MRT conditions.

View Article and Find Full Text PDF

Extrusion-based 3D printing is a widely utilized tool in tissue engineering, offering precise 3D control of bioinks to construct organ-sized biomaterial objects with hierarchically organized cellularized scaffolds. Topological properties in flowing polymers are determined by macromolecule conformation, namely orientation and stretch degree. We utilized the micro-macro approach to describe hydrogel macromolecule orientation during extrusion, offering a two-scale fluid behavior description.

View Article and Find Full Text PDF

Natural skin tension plays an important role during surgical procedures and during the healing process. Existing studies performed ex vivo give only a qualitative map of skin tension. In this study, we propose a quantitative characterization of skin tension in vivo using a new model.

View Article and Find Full Text PDF

In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties.

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF

Artificial intelligence techniques offer promising avenues for exploring human body features from videos, yet no freely accessible tool has reliably provided holistic and fine-grained behavioral analyses to date. To address this, we developed a machine learning tool based on a two-level approach: a first lower-level processing using computer vision for extracting fine-grained and comprehensive behavioral features such as skeleton or facial points, gaze, and action units; a second level of machine learning classification coupled with explainability providing modularity, to determine which behavioral features are triggered by specific environments. To validate our tool, we filmed 16 participants across six conditions, varying according to the presence of a person ("Pers"), a sound ("Snd"), or silence ("Rest"), and according to emotional levels using self-referential ("Self") and control ("Ctrl") stimuli.

View Article and Find Full Text PDF

In vivo impact on rabbit subchondral bone of viscosupplementation with a hyaluronic acid antioxidant conjugate.

BMC Musculoskelet Disord

December 2024

Université de Lyon, VetAgro Sup, UPSP ICE 2021.A104, Marcy-l'Etoile, 69280, France.

Objective: This study aimed to assess the effects of an antioxidant-conjugated Hyaluronic Acid (HA), specifically HA-4-aminoresorcinol (HA4AR), on articular cartilage and subchondral bone in osteoarthritis (OA). We conducted a comparative analysis between HA4AR and a commercially available high molecular weight HA formulation in a rabbit model of OA.

Materials And Methods: Eighteen rabbits underwent unilateral anterior cruciate ligament transection (ACLT) and were divided into three groups of six: Saline-group, HA-group, and HA4AR-group, based on the type of intra-articular injection received.

View Article and Find Full Text PDF

A new scaling regime characterized by a z=1 dynamical critical exponent has been reported in several numerical simulations of the one-dimensional Kardar-Parisi-Zhang and noisy Burgers equations. In these works, this scaling, differing from the well-known KPZ one z=3/2, was found to emerge in the tensionless limit for the interface and in the inviscid limit for the fluid. Based on functional renormalization group, the origin of this scaling has been elucidated.

View Article and Find Full Text PDF

Contrasting thermodynamic and hydrodynamic entropy.

Phys Rev E

November 2024

Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130 Ecully, France.

In this paper, using hydrodynamic entropy, we quantify multiscale disorder in Euler and hydrodynamic turbulence. These examples illustrate that the hydrodynamic entropy is not extensive because it is not proportional to the system size. Consequently, we cannot add hydrodynamic and thermodynamic entropies, which measure disorder at macroscopic and microscopic scales, respectively.

View Article and Find Full Text PDF

Evidence of dual energy transfer driven by magnetic reconnection at subion scales.

Phys Rev E

November 2024

School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom and Space Weather Technology, Research and Education Center (SWx-TREC), University of Colorado, Boulder, Colorado 80309, USA.

Article Synopsis
  • The study examines how energy moves within plasma turbulence, focusing on its effects on heating in space and astrophysical environments.
  • It suggests that magnetic reconnection plays a key role in energy transfer, facilitating both downward transfer to smaller scales and upward transfer to larger scales.
  • Utilizing advanced simulations, the research provides solid evidence that magnetic reconnection initiates this complex dual energy transfer process.
View Article and Find Full Text PDF
Article Synopsis
  • - The research developed a new type of olefin triblock copolymer using an innovative process that combines anionic and coordinative chain transfer polymerization to create polymers made of polystyrene (PS), ethylene butadiene rubber (EBR), and crystalline polyethylene (PE).
  • - The preparation involved transmetalating PS chains to create macro chain transfer agents, allowing for the effective copolymerization of ethylene and butadiene, followed by further extension with pure ethylene to form well-defined triblock structures.
  • - The resulting materials exhibit a balance of good mechanical and rheological properties, showing low viscosity and high performance as thermoplastic elastomers, particularly effective at temperatures above 150 °C.
View Article and Find Full Text PDF

A comprehensive understanding of chemical interactions at the surface of hair represents an important area of research within the cosmetic industry and is essential to obtain new products that exhibit both performance and sustainability. This paper aims at contributing to this research by applying a combination of surface techniques (neutron reflectometry, quartz-crystal microbalance and atomic force microscopy) to study adsorption of surface active ingredients onto hair-mimetic surfaces. The surface of hair is not homogeneous due to chemical and physical damage, and this work focuses on partly damaged hair models, in which both hydrophobic and charged moieties are present.

View Article and Find Full Text PDF

In short-carbon-fiber-reinforced polyamide 66 articles shaped by 3D printing (3D-SCFRPA66), the interfaces between printed layers are often susceptible to damage, and the composite is excessively brittle. Therefore, a novel treatment for 3D-printed short-carbon-fiber-reinforced polyamide (3D-SCFRPA66) using homogeneous low-potential electron beam irradiation (HLEBI) to enhance tensile properties was investigated. In 3D-SCFRPA66 samples, ductility was measured based on the following parameters: strain at tensile strength (corresponding to homogeneous deformation) () and resistance energy to homogeneous deformation, a measure of toughness (), which were both substantially increased.

View Article and Find Full Text PDF

Long-Range Surface Forces in Salt-in-Ionic Liquids.

ACS Nano

December 2024

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Ionic liquids (ILs) are a promising class of electrolytes with a unique combination of properties, such as extremely low vapor pressures and nonflammability. Doping ILs with alkali metal salts creates an electrolyte that is of interest for battery technology. These salt-in-ionic liquids (SiILs) are a class of superconcentrated, strongly correlated, and asymmetric electrolytes.

View Article and Find Full Text PDF

Fourier imaging for nanophotonics.

Nanophotonics

March 2024

CNRS, Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69134 Ecully, France.

Article Synopsis
  • Standard optical characterization techniques, like measuring reflection and transmission, lack data on the angular dependence of scattered light, limiting insights into light emission and scattering processes.
  • Fourier imaging is introduced as a method to capture the angular distribution of scattered light in a single shot, which enhances the understanding of nanostructures.
  • By improving Fourier imaging setups, researchers can measure additional aspects of light, including energy, polarization, and phase, allowing for real-time analysis of light characteristics.
View Article and Find Full Text PDF

Subpicosecond Spectroscopic Ellipsometry of the Photoinduced Phase Transition in VO Thin Films.

ACS Photonics

November 2024

Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Université Lyon, 69130 Ecully, France.

We report the first application of broadband time-resolved pump-probe ellipsometry to study the ultrafast dynamics of the photoinduced insulator-to-metal transition (IMT) in vanadium dioxide (VO) thin films driven by 35 fs laser pulses. This novel technique enables the direct measurement of the time-resolved evolution of the complex pseudodielectric function of VO during the IMT. We have identified distinct thermal and nonthermal dynamics in the photoinduced IMT, which critically depends on the pump wavelength and fluence, while providing a detailed temporal and spectral phase map.

View Article and Find Full Text PDF

Effects of shear stress on mesenchymal stem cells of patients with osteogenesis imperfecta.

Orthop Traumatol Surg Res

November 2024

Université de Paris Cité, B3OA, UMR CNRS 7052, INSERM U1271, 10 Avenue de Verdun, 75010 Paris, France; Service de Chirurgie Orthopédique et Réparatrice de l'Enfant, APHP-Sorbonne Université, Hôpital Armand Trousseau, 26 Avenue du Docteur Arnold-Netter, 75012 Paris, France. Electronic address:

Introduction: Osteogenesis imperfecta (OI) is a rare genetic bone disorder, mainly caused by autosomal dominant mutations of the COL1A1 or COL1A2 genes that encode the alpha chains of type 1 collagen. In severe forms and in nonambulatory patients, for whom physical exercise is difficult, exposing the bone to mechanical stimuli by promoting movement, especially with physiotherapy and mobility aids, is an essential part of clinical practice. However, the effects of mechanical stimulation at the cellular level remain unknown for this disease.

View Article and Find Full Text PDF

Association between chronic long-term exposure to airborne dioxins and breast cancer.

Int J Hyg Environ Health

January 2025

Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France.

Article Synopsis
  • Breast cancer is the most common cancer in women, and environmental pollutants, particularly endocrine disruptors like dioxins, may influence its development.
  • A study analyzed the link between airborne dioxin exposure and breast cancer risk in a cohort of 5222 cases and 5222 controls, using data about their proximity to dioxin sources and other factors.
  • The results indicate a slight increase in breast cancer risk with higher cumulative dioxin exposure, suggesting the need for measures to reduce air pollution exposure.
View Article and Find Full Text PDF