99 results match your criteria: "Earth and Life Institute-Agronomy[Affiliation]"

This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine.

View Article and Find Full Text PDF

Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development.

View Article and Find Full Text PDF

Citrate, malate and histidine have been involved in many processes including metal tolerance and accumulation in plants. These molecules have been frequently reported to be the potential nickel chelators, which most likely facilitate metal transport through xylem. In this context, we assess here, the relationship between organics acids and histidine content and nickel accumulation in Mesembryanthemum crystallinum and Brassica juncea grown in hydroponic media added with 25, 50 and 100 µM NiCl2.

View Article and Find Full Text PDF

Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa.

View Article and Find Full Text PDF

Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem.

Plant Sci

September 2015

Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.

The expanding interest for using lignocellulosic biomass in industry spurred the study of the mechanisms underlying plant cell-wall synthesis. Efforts using genetic approaches allowed the disentanglement of major steps governing stem fibre synthesis. Nonetheless, little is known about the relations between the stem maturation and the evolution of its proteome.

View Article and Find Full Text PDF

Aim: To isolate and characterize rhizobacteria from Theobroma cacao with antagonistic activity against Phytophthora palmivora, the causal agent of the black pod rot, which is one of the most important diseases of T. cacao.

Methods And Results: Among 127 rhizobacteria isolated from cacao rhizosphere, three isolates (CP07, CP24 and CP30) identified as Pseudomonas chlororaphis, showed in vitro antagonistic activity against P.

View Article and Find Full Text PDF

Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses.

Int J Mol Sci

July 2015

Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.

Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall.

View Article and Find Full Text PDF

SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis.

Plant Cell Environ

January 2016

Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UCL), B-1348, Louvain-la-Neuve, Belgium.

To counter environmental cues, cultivated tomato (Solanum lycopersicum L.) has evolved adaptive mechanisms requiring regulation of downstream genes. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors regulate abiotic stresses responses in plants.

View Article and Find Full Text PDF

Osmopriming is a pre-sowing treatment that enhances germination performance and stress tolerance of germinating seeds. Brassica napus seeds showed osmopriming-improved germination and seedling growth under salinity stress. To understand the molecular and biochemical mechanisms of osmopriming-induced salinity tolerance, the accumulation of proline, gene expression and activity of enzymes involved in proline metabolism and the level of endogenous hydrogen peroxide were investigated in rape seeds during osmopriming and post-priming germination under control (H2O) and stress conditions (100 mM NaCl).

View Article and Find Full Text PDF

Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%).

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato.

BMC Plant Biol

March 2015

Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UCL), Louvain-la-Neuve, 1348, Belgium.

Background: Cytokinins (CKs) are involved in response to various environmental cues, including salinity. It has been previously reported that enhancing CK contents improved salt stress tolerance in tomato. However, the underlying mechanisms of CK metabolism and signaling under salt stress conditions remain to be deciphered.

View Article and Find Full Text PDF

The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development.

View Article and Find Full Text PDF

How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

Ann Bot

February 2015

Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic.

Background: Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity.

View Article and Find Full Text PDF

Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach.

Plant Sci

February 2015

Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium.

Rape seeds primed with -1.2 MPa polyethylene glycol 6000 showed improved germination performance. To better understand the beneficial effect of osmopriming on seed germination, a global expression profiling method was used to compare, for the first time, transcriptomic and proteomic data for osmoprimed seeds at the crucial phases of priming procedure (soaking, drying), whole priming process and subsequent germination.

View Article and Find Full Text PDF

Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae).

PLoS One

January 2015

Earth and Life Institute-Agronomy, Research Team Genetics, Reproduction, Populations, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.

View Article and Find Full Text PDF

The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments.

View Article and Find Full Text PDF

Efficient breeding of drought-tolerant wheat (Triticum spp.) genotypes requires identifying mechanisms underlying exceptional performances. Evidence indicates that the drought-tolerant breeding line RAC875 is water-use conservative, limiting its transpiration rate (TR) sensitivity to increasing vapour pressure deficit (VPD), thereby saving soil water moisture for later use.

View Article and Find Full Text PDF

Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L.

Plant Cell Environ

June 2014

Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.13, 1348, Louvain-la-Neuve, Belgium.

Cadmium and zinc share many similar physiochemical properties, but their compartmentation, complexation and impact on other mineral element distribution in plant tissues may drastically differ. In this study, we address the impact of 10 μm Cd or 50 μm Zn treatments on ion distribution in leaves of a metallicolous population of the non-hyperaccumulating species Zygophyllum fabago at tissue and cell level, and the consequences on the plant response through a combined physiological, proteomic and metabolite approach. Micro-proton-induced X-ray emission and laser ablation inductively coupled mass spectrometry analyses indicated hot spots of Cd concentrations in the vicinity of vascular bundles in response to Cd treatment, essentially bound to S-containing compounds as revealed by extended X-ray absorption fine structure and non-protein thiol compounds analyses.

View Article and Find Full Text PDF

Transpiration sensitivities to evaporative demand and leaf areas vary with night and day warming regimes among wheat genotypes.

Funct Plant Biol

July 2013

Earth and Life Institute-Agronomy, Université catholique de Louvain, Croix du Sud 2, L7.05.14, 1348 Louvain-la-Neuve, Belgium.

Warmer climates are already contributing to significant decreases in wheat (Triticum spp.) yields worldwide, highlighting the need for more adapted germplasm. Although many studies have addressed the effects of warmer climates on grain physiology and photosynthesis, only a few have considered temperature effects on other key yield-related traits such as the sensitivity of transpiration rate (TR) to vapour pressure deficit (VPD)-a function of air temperature and relative humidity.

View Article and Find Full Text PDF

Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity.

Planta

September 2013

Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.

Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study.

View Article and Find Full Text PDF

Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions.

Physiol Plant

March 2013

Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UCL), Croix du Sud 5, bte L 7.07.13, B-1348, Louvain-la-Neuve, Belgium.

Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (F(v) /F(m) ), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs).

View Article and Find Full Text PDF

Organ-dependent oxylipin signature in leaves and roots of salinized tomato plants (Solanum lycopersicum).

J Plant Physiol

July 2012

Groupe de Recherche en Physiologie Végétale-GRPV, Earth and Life Institute-Agronomy-ELI-A, Université Catholique de Louvain, 5 Bte 13 Place Croix du Sud, B-1348 Louvain-La-Neuve, Belgium.

Oxylipins have been extensively studied in plant defense mechanisms or as signal molecules. Depending on the stress origin (e.g.

View Article and Find Full Text PDF

Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis.

J Exp Bot

July 2012

Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte L 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.

Root chicory (Cichorium intybus var. sativum) is a cash crop cultivated for inulin production in Western Europe. This plant can be exposed to severe water stress during the last 3 months of its 6-month growing period.

View Article and Find Full Text PDF

Ferrous iron toxicity is a mineral disorder frequently occurring under waterlogged soils where rice is cultivated. To decipher the main metabolic pathways involved in rice response to iron excess, seedlings have been exposed to 125 mg L(-1) FeSO(4) for 3 weeks. A combined transcriptomic, biochemical and physiological study has been performed after short-term (3 d) or long-term (3 weeks) exposure to iron in order to elucidate the strategy of stress adaptation with time.

View Article and Find Full Text PDF