4 results match your criteria: "E.L. Ginzton Laboratory and Department of Electrical Engineering Stanford University[Affiliation]"

We demonstrate highly parallel imaging with interleaved optical coherence tomography (iOCT) using an in-house-fabricated, air-spaced virtually-imaged phased array (VIPA). The air-spaced VIPA performs spectral encoding of the interferograms from multiple lateral points within a single sweep of the source and allows us to tune and balance several imaging parameters: number of multiplexed points, ranging depth, and sensitivity. In addition to a thorough discussion of the parameters and operating principles of the VIPA, we experimentally demonstrate the effect of different VIPA designs on the multiplexing potential of iOCT.

View Article and Find Full Text PDF

We report an automated classifier to detect the presence of basal cell carcinoma in images of mouse skin tissue samples acquired by polarization-sensitive optical coherence tomography (PS-OCT). The sensitivity and specificity of the classifier based on combined information of the scattering intensity and birefringence properties of the samples are significantly higher than when intensity or birefringence information are used alone. The combined information offers a sensitivity of 94.

View Article and Find Full Text PDF

We experimentally demonstrate endoscopic imaging through a multi-mode fiber (MMF) in which the number of resolvable image features approaches four times the number of spatial modes per polarization propagating in the fiber. In our method, a sequence of random field patterns is input to the fiber, generating a sequence of random intensity patterns at the output, which are used to sample an object. Reflected power values are returned through the fiber and linear optimization is used to reconstruct an image.

View Article and Find Full Text PDF

Resolution is an important figure of merit for imaging systems. We designed, fabricated and tested an optical phantom that mimics the simplicity of an Air Force Test Chart but can characterize both the axial and lateral resolution of optical coherence tomography systems. The phantom is simple to fabricate, simple to use and functions in versatile environments.

View Article and Find Full Text PDF