4 results match your criteria: "E.F and W.L. McKnight Brain Institute of the University of Florida[Affiliation]"

Following traumatic brain injury (TBI), the cytoskeletal protein alpha-II-spectrin is proteolyzed by calpain and caspase-3 to signature breakdown products. To determine whether alpha -II-spectrin proteolysis is a potentially reliable biomarker for TBI in humans, the present study (1) examined levels of spectrin breakdown products (SBDPs) in cerebrospinal fluid (CSF) from adults with severe TBI and (2) examined the relationship between these levels, severity of injury, and clinical outcome. This prospective case control study enrolled 41 patients with severe TBI, defined by a Glasgow Coma Scale (GCS) score of < or =8, who underwent intraventricular intracranial pressure monitoring.

View Article and Find Full Text PDF

Survivin attenuates apoptosis by inhibiting cleavage of some cell proteins by activated caspase-3. We recently discovered strong up-regulation of survivin, primarily in astrocytes and a sub-set of neurons, after traumatic brain injury (TBI) in rats. In this study we characterized co-expression of survivin with activated caspase-3 and downstream DNA fragmentation (TUNEL) in astrocytes and neurons after TBI.

View Article and Find Full Text PDF

In this study, we examined the expression and cellular localization of survivin and proliferating cell nuclear antigen (PCNA) after controlled cortical impact traumatic brain injury (TBI) in rats. There was a remarkable and sustained induction of survivin mRNA and protein in the ipsilateral cortex and hippocampus of rats after TBI, peaking at five days post injury. In contrast, both survivin mRNA and protein were virtually undetectable in craniotomy control animals.

View Article and Find Full Text PDF

Preclinical studies have identified numerous neuroprotective drugs that attenuate brain damage and improve functional outcome after cerebral ischemia. Despite this success in animal models, neuroprotective therapies in the clinical setting have been unsuccessful. Identification of biochemical markers common to preclinical and clinical cerebral ischemia will provide a more sensitive and objective measure of injury severity and outcome to facilitate clinical management and treatment.

View Article and Find Full Text PDF