197 results match your criteria: "Dutch Institute For Fundamental Energy Research[Affiliation]"

Chasing Vibro-Polariton Fingerprints in Infrared and Raman Spectra Using Surface Lattice Resonances on Extended Metasurfaces.

J Phys Chem C Nanomater Interfaces

April 2022

Institute for Photonic Integration, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands.

We present an experimental investigation of vibrational strong coupling of C=O bonds in poly(methyl methacrylate) to surface lattice resonances (SLRs) on arrays of gold particles in infrared and Raman spectra. SLRs are generated from the enhanced radiative coupling of localized resonances in single particles by diffraction in the array. Compared to previous studies in Fabry-Perot cavities, particle arrays provide a fully open system that easily couples with external radiation while having large field confinement close to the array.

View Article and Find Full Text PDF

Understanding the water splitting mechanism in photocatalysis is a rewarding goal as it will allow producing clean fuel for a sustainable life in the future. However, identifying the photocatalytic mechanisms by modeling photoactive nanoparticles requires sophisticated computational techniques based on multiscale modeling. In this review, we will survey the strengths and drawbacks of currently available theoretical methods at different length and accuracy scales.

View Article and Find Full Text PDF

A ReaxFF Molecular Dynamics Study of Hydrogen Diffusion in Ruthenium-The Role of Grain Boundaries.

J Phys Chem C Nanomater Interfaces

April 2022

Materials Simulation and Modelling, Department of Applied Physics and Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Ruthenium (Ru) thin films are used as protective caps for the multilayer mirrors in extreme ultraviolet lithography machines. When these mirrors are exposed to atomic hydrogen (H), it can permeate through Ru, leading to the formation of hydrogen-filled blisters on the mirrors. H has been shown to exhibit low solubility in bulk Ru, but the nature of H diffusion through Ru and its contribution to the mechanisms of blistering remain unknown.

View Article and Find Full Text PDF

Finetuning Hole-Extracting Monolayers for Efficient Organic Solar Cells.

ACS Appl Mater Interfaces

April 2022

Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.

Interface layers used for electron transport (ETL) and hole transport (HTL) often significantly enhance the performance of organic solar cells (OSCs). Surprisingly, interface engineering for hole extraction has received little attention thus far. By finetuning the chemical structure of carbazole-based self-assembled monolayers with phosphonic acid anchoring groups, varying the length of the alkane linker (2PACz, 3PACz, and 4PACz), these HTLs were found to perform favorably in OSCs.

View Article and Find Full Text PDF
Article Synopsis
  • Heterogeneous catalysts combined with non-thermal plasmas (NTP) can enhance chemical reaction yields beyond what each component can achieve alone, but understanding how they work together is complex.
  • Researchers demonstrated that platinum (Pt) catalysts can facilitate nitrogen oxidation in a plasma environment, even when neither the plasma nor catalyst alone produces significant nitric oxide (NO).
  • Through reactor models, they identified how the interactions between NTP and Pt lead to increased NO production, proposing that optimizing these systems requires careful tuning of plasma species and catalyst properties.
View Article and Find Full Text PDF

Defects in perovskite solar cells are known to affect the performance, but their precise nature, location, and role remain to be firmly established. Here, we present highly sensitive measurements of the sub-bandgap photocurrent to investigate defect states in perovskite solar cells. At least two defect states can be identified in p-i-n perovskite solar cells that employ a polytriarylamine hole transport layer and a fullerene electron transport layer.

View Article and Find Full Text PDF

Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the particle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles.

View Article and Find Full Text PDF

Monolithic All-Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses.

Adv Mater

March 2022

Molecular Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, Partner in Solliance, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.

Perovskite-based multijunction solar cells are a potentially cost-effective technology that can help surpass the efficiency limits of single-junction devices. However, both mixed-halide wide-bandgap perovskites and lead-tin narrow-bandgap perovskites suffer from non-radiative recombination due to the formation of bulk traps and interfacial recombination centers which limit the open-circuit voltage of sub-cells and consequently of the integrated tandem. Additionally, the complex optical stack in a multijunction solar cell can lead to losses stemming from parasitic absorption and reflection of incident light which aggravates the current mismatch between sub-cells, thereby limiting the short-circuit current density of the tandem.

View Article and Find Full Text PDF
Article Synopsis
  • - Perovskite oxides with dispersed nanoparticles are vital for energy conversion and catalysis, and redox exsolution offers a way to create nanostructures directly on these oxide supports through reduction methods.
  • - A novel method using plasma exposure has been developed for nucleating nanoparticles on perovskite, which outperforms traditional hydrogen reduction by producing over ten times more nickel nanoparticles from lanthanum titanate.
  • - Unlike electrochemical methods, plasma does not need a specialized cell setup and can be used on various materials, additionally, nitrogen plasma helps remove oxygen from the lattice, creating important chemical intermediates that enhance its effectiveness.
View Article and Find Full Text PDF

Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation.

Nat Commun

December 2021

Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

Metal halide perovskite photodiodes (PPDs) offer high responsivity and broad spectral sensitivity, making them attractive for low-cost visible and near-infrared sensing. A significant challenge in achieving high detectivity in PPDs is lowering the dark current density (J) and noise current (i). This is commonly accomplished using charge-blocking layers to reduce charge injection.

View Article and Find Full Text PDF

Unveiling the Symmetry Protection of Bound States in the Continuum with Terahertz Near-Field Imaging.

ACS Photonics

October 2021

Institute for Photonic Integration, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, MB, The Netherlands.

Bound states in the continuum (BICs) represent a new paradigm in photonics due to the full suppression of radiation losses. However, this suppression has also hampered the direct observation of them. By using a double terahertz (THz) near-field technique that allows the local excitation and detection of the THz amplitude, we are able to map for the first time the electromagnetic field amplitude and phase of BICs over extended areas, unveiling the field-symmetry protection that suppresses the far-field radiation.

View Article and Find Full Text PDF

Plasmonic resonances can concentrate light into exceptionally small volumes, which approach the molecular scale. The extreme light confinement provides an advantageous pathway to probe molecules at the surface of plasmonic nanostructures with highly sensitive spectroscopies, such as surface-enhanced Raman scattering. Unavoidable energy losses associated with metals, which are usually seen as a nuisance, carry invaluable information on energy transfer to the adsorbed molecules through the resonance linewidth.

View Article and Find Full Text PDF

The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages.

View Article and Find Full Text PDF

In this paper, the pixelated phase mask (PPM) method of interferometry is applied to coherence imaging (CI)-a passive, narrowband spectral imaging technique for diagnosing the edge and divertor regions of fusion plasma experiments. Compared to previous CI designs that use a linear phase mask, the PPM method allows for a higher possible spatial resolution. The PPM method is also observed to give a higher instrument contrast (analogous to a more narrow spectrometer instrument function).

View Article and Find Full Text PDF

Effect of Light-Induced Halide Segregation on the Performance of Mixed-Halide Perovskite Solar Cells.

ACS Appl Energy Mater

July 2021

Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Light-induced halide segregation hampers obtaining stable wide-band-gap solar cells based on mixed iodide-bromide perovskites. So far, the effect of prolonged illumination on the performance of mixed-halide perovskite solar cells has not been studied in detail. It is often assumed that halide segregation leads to a loss of open-circuit voltage.

View Article and Find Full Text PDF

Development of an 11-channel multi wavelength imaging diagnostic for divertor plasmas in MAST Upgrade.

Rev Sci Instrum

June 2021

Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE, United KingdomYork Plasma Institute, University of York, York YO10 5DQ, United KingdomDutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The NetherlandsCCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, United KingdomEcole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), 1015 Lausanne, SwitzerlandPlasma Science and Fusion Center MIT, Cambridge, Massachusetts 02139, USA.

Divertor detachment and alternative divertor magnetic geometries are predicted to be promising approaches to handle the power exhaust of future fusion devices. In order to understand the detachment process caused by volumetric losses in alternative divertor magnetic geometries, a Multi-Wavelength Imaging (MWI) diagnostic has recently been designed and built for the Mega Amp Spherical Tokamak Upgrade. The MWI diagnostic will simultaneously capture 11 spectrally filtered images of the visible light emitted from divertor plasmas and provide crucial knowledge for the interpretation of observations and modeling efforts.

View Article and Find Full Text PDF

Few semiconducting polymers are known that possess more than one semi-crystalline structure. Guidelines for rationalizing or creating polymorphism in these materials do not exist. Two different semi-crystalline polymorphs, and , and an amorphous phase have recently been identified for alternating diketopyrrolopyrrole-quaterthiophene copolymers (PDPP4T).

View Article and Find Full Text PDF

Plasma Modeling and Prebiotic Chemistry: A Review of the State-of-the-Art and Perspectives.

Molecules

June 2021

Istituto per la Scienza e Tecnologia dei Plasmi, CNR, Via Amendola, 122/D, 70126 Bari, Italy.

We review the recent progress in the modeling of plasmas or ionized gases, with compositions compatible with that of primordial atmospheres. The plasma kinetics involves elementary processes by which free electrons ultimately activate weakly reactive molecules, such as carbon dioxide or methane, thereby potentially starting prebiotic reaction chains. These processes include electron-molecule reactions and energy exchanges between molecules.

View Article and Find Full Text PDF

An atomistic description of tin deposition on ruthenium and its effect on blistering damage is of great interest in extreme ultraviolet (EUV) lithography. In EUV machines, tin debris from the EUV-emitting tin plasma may be deposited on the mirrors in the optical path. Tin facilitates the formation of hydrogen-filled blisters under the ruthenium top layer of the multi-layer mirrors.

View Article and Find Full Text PDF

Microstructure Study of Pulsed Laser Beam Welded Oxide Dispersion-Strengthened (ODS) Eurofer Steel.

Micromachines (Basel)

May 2021

Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands.

Oxide dispersion-strengthened (ODS) Eurofer steel was laser welded using a short pulse duration and a designed pattern to minimise local heat accumulation. With a laser power of 2500 W and a duration of more than 3 ms, a full penetration can be obtained in a 1 mm thick plate. Material loss was observed in the fusion zone due to metal vaporisation, which can be fully compensated by the use of filler material.

View Article and Find Full Text PDF

Parasitic optical absorption is one of the root causes of the moderate efficiency of metal halide perovskite solar cells (PSCs) with an opaque substrate configuration. Here, we investigate the reduction of these optical losses by using thin (7-10 nm), undoped, thermally evaporated 2,2',7,7'-tetrakis[,-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD), ,'-di(1-naphthyl)-,'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) (NPB), and tris(4-carbazoyl-9-ylphenyl)amine) (TCTA) hole transport layers (HTLs). Of these, NPB is found to offer the best compromise between efficiency and stability.

View Article and Find Full Text PDF

In the quest for active and inexpensive (photo)electrocatalysts, atomistic simulations of the oxygen evolution reaction (OER) are essential for understanding the catalytic process of water splitting at solid surfaces. In this paper, the enhancement of the OER by first-row transition-metal (TM) doping of the abundant semiconductor ZnO was studied using density functional theory (DFT) calculations on a substantial number of possible structures and bonding geometries. The calculated overpotential for undoped ZnO was 1.

View Article and Find Full Text PDF

High-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics-however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally.

View Article and Find Full Text PDF

It is a present-day challenge to design and develop oxygen-permeable solid oxide fuel cell (SOFC) electrode and electrolyte materials that operate at low temperatures. Herein, by performing high-throughput density functional theory calculations, oxygen vacancy formation energy, , data for a pool of all-inorganic ABO and AABO cubic perovskites is generated. Using data of perovskites, the area-specific resistance (ASR) data, which is related to both oxygen reduction reaction activity and selective oxygen ion conductivity of materials, is calculated.

View Article and Find Full Text PDF

Light absorption and scattering by metal nanoparticles can drive catalytic reactions at their surface via the generation of hot charge carriers, elevated temperatures, and focused electromagnetic fields. These photoinduced processes can substantially alter the shape, surface structure, and oxidation state of surface atoms of the nanoparticles and therefore significantly modify their catalytic properties. Information on such local structural and chemical change in plasmonic nanoparticles is however blurred in ensemble experiments, due to the typical large heterogeneity in sample size and shape distributions.

View Article and Find Full Text PDF