960 results match your criteria: "Donnelly Centre for Cellular and Biomolecular Research[Affiliation]"

Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction.

Nat Rev Mol Cell Biol

January 2025

Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system.

View Article and Find Full Text PDF

Selective activation of FZD2 and FZD7 reveals non-redundant function during mesoderm differentiation.

Stem Cell Reports

December 2024

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. Electronic address:

During gastrulation, Wnt-β-catenin signaling dictates lineage bifurcation generating different mesoderm cell types. However, the specific role of Wnt receptors in mesoderm specification remains elusive. Using selective Frizzled (FZD) and LRP5/6 antibody-based agonists, we examined FZD receptors' function during directed mesoderm differentiation of human pluripotent stem cells (hPSCs).

View Article and Find Full Text PDF

Protocol for cell image-based spatiotemporal proteomics in budding yeast.

STAR Protoc

January 2025

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

The eukaryotic cell division cycle is a highly conserved process, featuring fluctuations in protein localization and abundance required for key cell cycle transitions. Here, we present a protocol for the spatiotemporal analysis of the proteome during the budding yeast cell division cycle using live-cell imaging. We describe steps for strain construction, cell cultivation, microscopy, and image analysis.

View Article and Find Full Text PDF

Photomediated One-Pot Multicomponent Cascade Reaction for the Synthesis of N-Acyl/Sulfonyl-α-Phosphonated-1,2,3,4-Tetrahydroisoquinoline via Twice Acyl/Sulfonyl Iminium Formation.

Chem Asian J

January 2025

Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China.

N-acyl/sulfonyl-α-phosphonated 1,2,3,4-tetrahydroiso-quinolines (THIQs) are significant structural motifs in organic synthesis and drug discovery. However, the one-pot approach enabling direct difunctionalization of THIQs remains challenging. Herein we report a photomediated one-pot multicomponent cascade reaction to access N-acyl/sulfonyl-α-phosphonated THIQs via twice acyl/sulfonyl iminium.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection.

Adv Mater

January 2025

Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.

Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug.

View Article and Find Full Text PDF

Innovative and easy-to-implement strategies are needed to improve the pathogenicity assessment of rare germline missense variants. Somatic cancer driver mutations identified through large-scale tumor sequencing studies often impact genes that are also associated with rare Mendelian disorders. The use of cancer mutation data to aid in the interpretation of germline missense variants, regardless of whether the gene is associated with a hereditary cancer predisposition syndrome or a non-cancer-related developmental disorder, has not been systematically assessed.

View Article and Find Full Text PDF

High mortality and low response rates in lung cancer patients call for novel therapeutic targets. Data mining of whole-genome genetic dependency screens suggest Cell Division Cycle 40 (CDC40) to be an essential protein for lung cancer cell survival. We characterized CDC40 knockdown effects in multiple lung cancer cell lines, revealing induced cell cycle defects that resulted in strong growth inhibition and activation of apoptosis.

View Article and Find Full Text PDF

The mechanisms of electrical neuromodulation.

J Physiol

January 2025

Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada.

The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour.

View Article and Find Full Text PDF

mRNA decay pre-complex assembly drives timely cell-state transitions during differentiation.

Cell Rep

December 2024

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Genetic Medicine, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Electronic address:

Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein brain tumor (Brat) promotes the degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and uncommitted intermediate neural progenitors (immature INPs). We identify ubiquitin-specific protease 5 (Usp5) as a candidate Brat interactor essential for the degradation of Brat target mRNAs.

View Article and Find Full Text PDF

Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.

View Article and Find Full Text PDF

Examining the NEUROG2 lineage and associated gene expression in human cortical organoids.

Development

January 2025

Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada.

Proneural genes are conserved drivers of neurogenesis across the animal kingdom. How their functions have adapted to guide human-specific neurodevelopmental features is poorly understood. Here, we mined transcriptomic data from human fetal cortices and generated from human embryonic stem cell-derived cortical organoids (COs) to show that NEUROG1 and NEUROG2 are most highly expressed in basal neural progenitor cells, with pseudotime trajectory analyses indicating that NEUROG1-derived lineages predominate early and NEUROG2 lineages later.

View Article and Find Full Text PDF

A High-Throughput Method for Screening Peptide Activators of G-Protein-Coupled Receptors.

ACS Omega

December 2024

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.

Here, we describe an innovative and efficient method for screening peptide activators of G-protein-coupled receptors (GPCRs) utilizing a protein-protein interaction (PPI) approach. We designed a library of 92,918 peptides fused with transmembrane domains of glycosylphosphatidylinositol-anchored proteins (GPI-APs). We employed a pooled lentiviral system to promote the expression of these proteins at the cellular membrane and evaluate their ability to activate GPCRs.

View Article and Find Full Text PDF

Delivering medical agents to diseased tissues has been challenging, leading researchers to study the in vivo transport process in the body for improving delivery. Many imaging techniques exist for mapping the distribution of medical agent-carrying nanoparticles in tissues, but they cannot capture the three-dimensional context of tissues with single nanoparticle resolution. Here, we developed 3DEM-NPD, a three-dimensional electron microscopy (3D EM) machine learning strategy to image and map single nanoparticle distributions (NPD) in tissues.

View Article and Find Full Text PDF

During development, Shh attracts axons of spinal cord commissural neurons to the floor plate. Shh-mediated attraction of commissural axons requires the receptor Boc. How Boc regulates cytoskeletal changes in growth cones in response to Shh is not fully understood.

View Article and Find Full Text PDF

Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors.

View Article and Find Full Text PDF

In humans, misprocessed mRNAs containing intact 5' Splice Site (5'SS) motifs are nuclear retained and targeted for decay by ZFC3H1, a component of the Poly(A) Exosome Targeting complex, and U1-70K, a component of the U1 snRNP. In , the ZFC3H1 homolog, Red1, binds to the YTH domain-containing protein Mmi1 and targets certain RNA transcripts to nuclear foci for nuclear retention and decay. Here we show that YTHDC1 and YTHDC2, two YTH domain-containing proteins that bind to -6-methyladenosine (m6A) modified RNAs, interact with ZFC3H1 and U1-70K, and are required for the nuclear retention of mRNAs with intact 5'SS motifs.

View Article and Find Full Text PDF

Human neural organoids offer an exciting opportunity for studying inaccessible human-specific brain development; however, it remains unclear how precisely organoids recapitulate fetal/primary tissue biology. We characterize field-wide replicability and biological fidelity through a meta-analysis of single-cell RNA-sequencing data for first and second trimester human primary brain (2.95 million cells, 51 data sets) and neural organoids (1.

View Article and Find Full Text PDF

Recent advances in spatial transcriptomics have enabled simultaneous preservation of high-throughput gene expression profiles and the spatial context, enabling high-resolution exploration of distinct regional characterization in tissue. To effectively understand the underlying biological mechanisms within tissue microenvironments, there is a requisite for methods that can accurately capture external spatial heterogeneity and interpret internal gene regulation from spatial transcriptomics data. However, current methods for region identification often lack the simultaneous characterizing of spatial structure and gene regulation, thereby limiting the ability of spatial dissection and gene interpretation.

View Article and Find Full Text PDF

Identification of VISTA regulators in macrophages mediating cancer cell survival.

Sci Adv

November 2024

Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Numerous human cancers have exhibited the ability to elude immune checkpoint blockade (ICB) therapies. This type of resistance can be mediated by immune-suppressive macrophages that limit antitumor immunity in the tumor microenvironment (TME). Here, we elucidate a strategy to shift macrophages into a proinflammatory state that down-regulates V domain immunoglobulin suppressor of T cell activation (VISTA) via inhibiting AhR and IRAK1.

View Article and Find Full Text PDF

The COVID-19 pandemic accelerated the development of automated systems for detecting molecular targets for the point-of-care. However, these systems have limited multiplexing capabilities because of the need to alter their hardware to accommodate additional targets and probes. Quantum dot barcodes address this multiplexing obstacle, but their assays have multiple steps that rely on extensive training and laboratory equipment.

View Article and Find Full Text PDF

Resistance to chemotherapy remains a major hurdle to the cure of Acute Myeloid Leukemia (AML) patients. Recent studies indicate a minority of malignant cells, termed drug-tolerant persisters (DTPs), stochastically upregulate stress pathways to evade cell death upon acute exposure to chemotherapy without acquiring new genetic mutations. This chemoresistant state is transient and the cells return to baseline after removal of chemotherapy.

View Article and Find Full Text PDF

In recent years, monoclonal antibodies (mAbs) have become a powerful tool in the treatment of human diseases. Currently, over 100 mAbs have received approval for therapeutic use in the US, with wide-ranging applications from cancer to infectious diseases. The predominant method of producing antibodies for therapeutics involves expression in mammalian cell lines.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are found along the neuraxis of the developing and mature central nervous system. They are found in defined niches that have been shown to regulate NSC behaviour in a regionally distinct manner. Specifically, previous research has shown that myelin basic protein (MBP), when presented in the spinal cord niche, inhibits NSC proliferation and oligodendrogenesis.

View Article and Find Full Text PDF

Mechanically constrained into naivety.

Nat Mater

December 2024

Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

View Article and Find Full Text PDF