A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session31rmm74i1ujb3pnt1ie8if47hl56klqi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Dong Thap University[Affiliation] Publications | LitMetric

110 results match your criteria: "Dong Thap University[Affiliation]"

Chloroacetamide herbicides are widely used to control weeds globally. In this study, three acetochlor-degrading mixed cultures using nitrate, sulfate, and ferric iron as electron acceptors were isolated and determined for their degradation under anaerobic conditions. The degradation rates of all mixed pure cultures in a mineral medium were not much different at 1 µM, while the rates at 50 µM were in the order: mixed culture using nitrate > sulfate > ferric iron as electron acceptors, giving 6.

View Article and Find Full Text PDF

The genus Psyttalia Walker is recorded for the first time from Vietnam with seven species described and fully illustrated as new for science, viz. Psyttalia antenervis Long, sp. nov.

View Article and Find Full Text PDF

Application of multivariate statistical techniques in the assessment of long-term surface water quality in Dong Thap Province, Vietnam.

Environ Monit Assess

December 2024

Department of Natural Resources and Environment of Dong Thap Province, Dong Thap Province, National Route No, 30, An Bình Commune, Cao Lanh City, Vietnam.

Article Synopsis
  • - The study evaluated surface water quality in Dong Thap province from 2013 to 2023, utilizing methods like water quality index, PCA, and cluster analysis to analyze various water parameters.
  • - Findings revealed high levels of Escherichia coli in 95.5% of samples and significant exceedances in other pollutants, though the presence of heavy metals like As, Cu, and Pb decreased by 2022-2023.
  • - Overall, the water quality showed improvement trends, with 70% of monitoring sites considered good quality by 2023, highlighting the need for effective policymaking to address pollution sources related to human activities and hydrological changes.
View Article and Find Full Text PDF
Article Synopsis
  • The study examines the electronic properties and contact behavior of graphene/γ-GeSe heterostructures using first-principles calculations under electric fields and strains.
  • At equilibrium, the heterostructure exhibits a p-type Schottky contact with a low barrier, ideal for low-resistance electronic devices.
  • Applying electric fields and adjusting strains can switch contact types from p-type to n-type or even to Ohmic contact, opening up opportunities for enhancing device performance through tunable electronic properties.
View Article and Find Full Text PDF

Exploring the versatility of MoSe/WS heterostructures.

Dalton Trans

December 2024

Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam.

Two-dimensional materials and their combined heterostructures have paved the way for numerous next-generation electronic and optoelectronic applications. Herein, we performed first principles calculations to computationally design the MoSe/WS heterostructure and consider its geometric structure, electronic properties and contact behavior, as well as the effects of the electric fields and strain. Our results show that the MoSe/WS heterostructure is energetically, thermodynamically and mechanically stable.

View Article and Find Full Text PDF

In this paper, the magneto-optical transport (MOT) properties of III-nitride Pöschl-Teller quantum well (QW) semiconductors, including AlN, GaN, and InN, resulting from the acoustic phonon interaction are thoroughly investigated and compared by applying the technique of operator projection. In particular, a comparison is made between the Pöschl-Teller QW results and the square QW ones. The findings demonstrate that the MOT properties of III-nitride QW semiconductors resulting from acoustic phonon scattering are strongly influenced by the quantum system (QS) temperature, applied magnetic field, and QW width.

View Article and Find Full Text PDF

In the present work, we propose GaGeX (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX are found as piezoelectric materials with high piezoelectric coefficient of -1.

View Article and Find Full Text PDF

Recently, searching for a metal-semiconductor junction (MSJ) that exhibits low-contact resistance has received tremendous consideration, as they are essential components in next-generation field-effect transistors. In this work, we design a MSJ by integrating two-dimensional (2D) graphene as the metallic electrode and 2D Janus γ-GeSSe as the semiconducting channel using first-principles simulations. All the graphene/γ-GeSSe MSJs are predicted to be energetically, mechanically, and thermodynamically stable, characterized by the weak van der Waals (vdW) interactions.

View Article and Find Full Text PDF

Minimizing the contact barriers at the interface, forming between two different two-dimensional metals and semiconductors, is essential for designing high-performance optoelectronic devices. In this work, we design different types of metal-semiconductor heterostructures by combining 2D metallic MX (M = Nb, Hf; X = S, Se) and 2D semiconductor SiH and investigate systematically their electronic properties and contact characteristics using first principles calculations. We find that all the MX/SiH (M = Nb, Ta; X = S, Se) heterostructures are energetically stable, suggesting that they could potentially be synthesized in the future.

View Article and Find Full Text PDF

Breaking structural symmetry in two-dimensional layered Janus materials can result in enhanced new phenomena and create additional degrees of piezoelectric responses. In this study, we theoretically design a series of Janus monolayers HfGeZH (Z = N, P, As) and investigate their structural characteristics, crystal stability, piezoelectric responses, electronic features, and carrier mobility using first-principles calculations. Phonon dispersion analysis confirms that HfGeZH monolayers are dynamically stable and their mechanical stability is also confirmed through the Born-Huang criteria.

View Article and Find Full Text PDF

In this study, essential oils and waste hydrosols of leaves of Ocimum tenuiflorum in four different geographical locations were extracted by hydrodistillation method and using gas chromatography/mass spectrometry (GC/MS) for chemical composition analysis. All four essential oil samples contained the main components (E)-β-caryophyllene (27.8-49.

View Article and Find Full Text PDF

The binding of the virus to host cells is the first step in viral infection. Human cell angiotensin converting enzyme 2 (ACE2) is the most popular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while other receptors have recently been observed in experiments. Neuropilin-1 protein (NRP1) is one of them, but the mechanism of its binding to the wild type (WT) and different variants of the virus remain unclear at the atomic level.

View Article and Find Full Text PDF
Article Synopsis
  • The article investigates new materials for piezoelectric and electronic devices by analyzing Janus ZrGeZH monolayers (where Z = N, P, As) using density functional theory calculations.
  • The study confirms the stability of these materials through various simulations, revealing that they are indirect band gap semiconductors with band gap energies of about 1.15 eV for ZrGePH and 1.00 eV for ZrGeAsH.
  • The research highlights the promising piezoelectric properties and high electron mobility of these monolayers, indicating their potential use in advanced technology applications.
View Article and Find Full Text PDF

Two-dimensional (2D) van der Waals (vdW) heterostructures are considered as promising candidates for realizing multifunctional applications, including photodetectors, field effect transistors and solar cells. In this work, we performed first-principles calculations to design a 2D vdW MoTe/MoS heterostructure and investigate its electronic properties, contact types and the impact of an electric field and in-plane biaxial strain. We find that the MoTe/MoS heterostructure is predicted to be structurally, thermally and mechanically stable.

View Article and Find Full Text PDF

Electron-phonon coupling effect on the optical absorption of gated β-borophene.

Phys Chem Chem Phys

July 2024

Faculty of of Physics, University of Education, Hue University, Hue, 530000, Vietnam.

This study addresses the effect of electron-phonon coupling (EPC) on the electro-optical properties of gated β-borophene. The focus is on how EPC influences the orbital hybridization of boron atoms, particularly within the Bariśic-Labbe-Friedel-Su-Schrieffer-Heeger framework, and considers the role of gate electrodes in this process. The results reveal a redshift in the optical spectrum only when there is positive feedback from one electrode on EPC.

View Article and Find Full Text PDF

Electronic phase transition in bilayer 6 borophene.

Phys Chem Chem Phys

July 2024

Faculty of of Physics, University of Education, Hue University, Hue 530000, Vietnam.

In this study, using the tight-binding model and Green's function technique, we investigate potential electronic phase transitions in bilayer 6 borophene under the influence of external stimuli, including a perpendicular electric field, electron-hole coupling between sublayers (excitonic effects), and dopants. Our focus is on key electronic properties such as the band structure and density of states. Our findings reveal that the pristine lattice is metal with Dirac cones around the Fermi level, where their intersection forms a nodal line.

View Article and Find Full Text PDF

A TiO/graphene quantum dots composite (TiO/GQDs) obtained by in situ synthesis of GQDs, derived from coffee grounds, and peroxo titanium complexes was used as electrode modifier in the simultaneous electrochemical determination of uric acid and hypoxanthine. The TiO/GQDs material was characterized by photoluminescence, X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray mapping. The TiO/GQDs-GCE exhibits better electrochemical activity for uric acid and hypoxanthine than GQDs/GCE or TiO/GCE in differential pulse voltammetry (DPV) measurements.

View Article and Find Full Text PDF

Pretilachlor and safener fenclorim are the main components of herbicides widely applied to control weeds. Although some pure cultures of bacteria and fungi which degraded these compounds under aerobic conditions were isolated, no isolated pretilachlor- and fenclorim-degrading bacterial strains under anaerobic condition had been available. In this study, the degradation of these compounds and the effects of them on bacterial community structures were investigated under anaerobic conditions.

View Article and Find Full Text PDF

The emergence of the variant of concern Omicron (B.1.1.

View Article and Find Full Text PDF

Two-dimensional (2D) metallic TaSe and semiconducting WSe materials have been successfully fabricated in experiments and are considered as promising contact and channel materials, respectively, for the design of next-generation electronic devices. Herein, we design a metal-semiconductor (M-S) heterostructure combining metallic TaSe and semiconducting WSe materials and investigate the atomic structure, electronic properties and controllable contact types of the combined TaSe/WSe M-S heterostructure using first-principles calculations. Our results reveal that the TaSe/WSe M-S heterostructure can adopt four different stable stacking configurations, all of which exhibit enhanced elastic constants compared to the constituent monolayers.

View Article and Find Full Text PDF

The emergence of van der Waals (vdW) heterostructures, which consist of vertically stacked two-dimensional (2D) materials held together by weak vdW interactions, has introduced an innovative avenue for tailoring nanoelectronic devices. In this study, we have theoretically designed a metal/semiconductor heterostructure composed of NbS and Janus MoSSe, and conducted a thorough investigation of its electronic properties and the formation of contact barriers through first-principles calculations. The effects of stacking configurations and the influence of external electric fields in enhancing the tunability of the NbS/Janus MoSSe heterostructure are also explored.

View Article and Find Full Text PDF

In the present study, the genus Arhaconotus is revised and keyed with three species of this genus from Vietnam were described and fully illustrated as new for science, viz.Arhaconotus belokobylskiji Long,sp. nov.

View Article and Find Full Text PDF

Conducting heterostructures have emerged as a promising strategy to enhance physical properties and unlock the potential application of such materials. Herein, we conduct and investigate the electronic and transport properties of the BSe/ScCF heterostructure using first-principles calculations. The BSe/ScCF heterostructure is structurally and thermodynamically stable, indicating that it can be feasible for further experiments.

View Article and Find Full Text PDF