73 results match your criteria: "Diabetes and Cardiovascular Center[Affiliation]"

Hemoadsorption: consensus report of the 30th Acute Disease Quality Initiative workgroup.

Nephrol Dial Transplant

November 2024

Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany; and Outcomes Research Consortium, Cleveland, OH, USA.

Adsorption-based extracorporeal therapies have been subject to technical developments and clinical application for close to five decades. More recently, new technological developments in membrane and sorbent manipulation have made it possible to deliver more biocompatible extracorporeal adsorption therapies to patients with a variety of conditions. There are several key rationales based on physicochemical principles and clinical considerations that justify the application and investigation of such therapies as evidenced by multiple ex vivo, experimental and clinical observations.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) and mitochondria are interconnected intracellular organelles with vital roles in the regulation of cell signaling and function. While the ER participates in a number of biological processes including lipid biosynthesis, Ca storage and protein folding and processing, mitochondria are highly dynamic organelles governing ATP synthesis, free radical production, innate immunity and apoptosis. Interplay between the ER and mitochondria plays a crucial role in regulating energy metabolism and cell fate control under stress.

View Article and Find Full Text PDF

Objective: Cardiac diastolic dysfunction (DD) and arterial stiffness are early manifestations of obesity-associated prediabetes, and both serve as risk factors for the development of heart failure with preserved ejection fraction (HFpEF). Since the incidence of DD and arterial stiffness are increasing worldwide due to exponential growth in obesity, an effective treatment is urgently needed to blunt their development and progression. Here we investigated whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses DD and arterial stiffness in an animal model of prediabetes more effectively than valsartan monotherapy.

View Article and Find Full Text PDF

Obesity, Adipose Tissue and Vascular Dysfunction.

Circ Res

April 2021

Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.).

Cardiovascular diseases are the leading cause of death worldwide. Overweight and obesity are strongly associated with comorbidities such as hypertension and insulin resistance, which collectively contribute to the development of cardiovascular diseases and resultant morbidity and mortality. Forty-two percent of adults in the United States are obese, and a total of 1.

View Article and Find Full Text PDF

Insulin resistance, cardiovascular stiffening and cardiovascular disease.

Metabolism

June 2021

Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA. Electronic address:

The cardiometabolic syndrome (CMS) and obesity are typically characterized by a state of metabolic insulin resistance. As global and US rates of obesity increase there is an acceleration of the incidence and prevalence of insulin resistance along with associated cardiovascular disease (CVD). Under physiological conditions insulin regulates glucose homeostasis by enhancing glucose disposal in insulin sensitive tissues while also regulating delivery of nutrients through its vasodilation actions on small feed arteries.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death.

View Article and Find Full Text PDF

Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases.

Nat Rev Cardiol

July 2021

Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function.

View Article and Find Full Text PDF

Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney.

View Article and Find Full Text PDF

Cardiovascular (CV) stiffening represents a complex series of events evolving from pathological changes in individual cells of the vasculature and heart which leads to overt tissue fibrosis. While vascular stiffening occurs naturally with ageing it is accelerated in states of insulin (INS) resistance, such as obesity and type 2 diabetes. CV stiffening is clinically manifested as increased arterial pulse wave velocity and myocardial fibrosis-induced diastolic dysfunction.

View Article and Find Full Text PDF

Consumption of a Western diet (WD) induces central aortic stiffening that contributes to the transmittance of pulsatile blood flow to end organs, including the kidney. Our recent work supports that endothelial epithelial Na channel (EnNaC) expression and activation enhances aortic endothelial cell stiffening through reductions in endothelial nitric oxide (NO) synthase (eNOS) and bioavailable NO that result in inflammatory and oxidant responses and perivascular fibrosis. However, the role that EnNaC activation has on endothelial responses in the renal circulation remains unknown.

View Article and Find Full Text PDF

Endothelial sodium channel activation promotes cardiac stiffness and diastolic dysfunction in Western diet fed female mice.

Metabolism

August 2020

Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA. Electronic address:

Objective: Obesity is associated with myocardial fibrosis and impaired diastolic relaxation, abnormalities that are especially prevalent in women. Normal coronary vascular endothelial function is integral in mediating diastolic relaxation, and recent work suggests increased activation of the endothelial cell (EC) mineralocorticoid receptor (ECMR) is associated with impaired diastolic relaxation. As the endothelial Na channel (EnNaC) is a downstream target of the ECMR, we sought to determine whether EC-specific deletion of the critical alpha subunit, αEnNaC, would prevent diet induced-impairment of diastolic relaxation in female mice.

View Article and Find Full Text PDF

Commentary: COVID-19 in patients with diabetes.

Metabolism

June 2020

Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA. Electronic address:

View Article and Find Full Text PDF

Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition.

Cell Signal

April 2020

Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA. Electronic address:

Article Synopsis
  • Proximal tubular epithelial cells in the kidneys are essential for regulating glucose levels, with sodium-glucose co-transporters (SGLT) being crucial in this process.
  • Recent studies showed that high glucose levels suppress RECK, an important protein that protects against kidney damage, while the SGLT2 inhibitor empagliflozin can reverse this suppression.
  • The mechanisms behind RECK suppression involve oxidative stress and inflammation, but treatments like empagliflozin may help restore RECK levels and mitigate kidney damage in conditions like diabetic kidney disease.
View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) and late-onset Alzheimer's disease-dementia (LOAD) are increasing in global prevalence and current predictions indicate they will only increase over the coming decades. These increases may be a result of the concurrent increases of obesity and aging. T2DM is associated with cognitive impairments and metabolic factors, which increase the cellular vulnerability to develop an increased risk of age-related LOAD.

View Article and Find Full Text PDF

Increased arterial stiffening is not only a hallmark of the aging process but the consequence of many metabolic abnormalities such as insulin resistance (IR), obesity, and metabolic dyslipidemia. In patients with the cardiometabolic syndrome, arterial stiffening is consistently observed across all age groups. A core feature linking obesity and the metabolic syndrome to arterial stiffness has been IR.

View Article and Find Full Text PDF

Epithelial sodium channels in endothelial cells mediate diet-induced endothelium stiffness and impaired vascular relaxation in obese female mice.

Metabolism

October 2019

Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA. Electronic address:

Objective: Mineralocorticoid receptor activation of the epithelial sodium channel in endothelial cells (ECs) (EnNaC) is accompanied by aldosterone induced endothelial stiffening and impaired nitric oxide (NO)-mediated arterial relaxation. Recent data support enhanced activity of the alpha subunit of EnNaC (αEnNaC) mediates this aldosterone induced endothelial stiffening and associated endothelial NO synthase (eNOS) activation. There is mounting evidence that diet induced obesity diminishes expression and activation of AMP-activated protein kinase α (AMPKα), sirtuin 1 (Sirt1), which would be expected to lead to impaired downstream eNOS activation.

View Article and Find Full Text PDF

Mineralocorticoid antagonists and ENaC inhibitors in hyperaldosteronism.

J Clin Hypertens (Greenwich)

July 2019

Diabetes and Cardiovascular Center, Dalton Cardiovascular Research Center, VA Medical Center, University of Missouri School of Medicine, Columbia, Missouri.

View Article and Find Full Text PDF

Astrocytes via their foot processes (ACfp) are specialized connecting cells, and they structurally connect the neurovascular unit (NVU) mural cells to neurons. Astrocytes provide homeostatic mechanisms for structural connections and provide communication between the NVU and regional neurons for functional hyperemia in regions of increased neuronal activity (neurovascular coupling). Previously, our group has demonstrated a detachment, separation, and retraction of ACfp in diabetic / females (DBC).

View Article and Find Full Text PDF

Objective: Diabetic nephropathy (DN) is characterized by glomerular and tubulointerstitial injury, proteinuria and remodeling. Here we examined whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses renal injury in a pre-clinical model of early DN more effectively than valsartan monotherapy.

Methods: Sixty-four male Zucker Obese rats (ZO) at 16 weeks of age were distributed into 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val) (68 mg kg day; ZOSV); and Group 3: valsartan (val) (31 mg kg day; ZOV).

View Article and Find Full Text PDF

Type 2 diabetes is associated with diabetic cognopathy. Anti-hyperglycemic sodium glucose transporter 2 (SGLT2) inhibitors have shown promise in reducing cognitive impairment in mice with type 2 diabetes mellitus. We recently described marked ultrastructural (US) remodeling of the neurovascular unit (NVU) in type 2 diabetic / female mice.

View Article and Find Full Text PDF

Obesity is characterized by enhanced MR (mineralocorticoid receptor) activation, vascular stiffness, and associated cardiovascular and kidney disease. Consumption of a Western-style diet (WD), high in saturated fat and refined carbohydrates, by female mice, leads to obesity and vascular stiffening. Use of ECMR (endothelial cell-specific MR) knockout mice supports that ECMR activation is critical for development of vascular and cardiac fibrosis and stiffening.

View Article and Find Full Text PDF

A Direct Comparison of IV and ICV Delivery Methods for Gene Replacement Therapy in a Mouse Model of SMARD1.

Mol Ther Methods Clin Dev

September 2018

Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.

Article Synopsis
  • SMARD1 is an infantile genetic disorder that leads to muscle weakness and breathing difficulties due to neuron degeneration.
  • A study compared the effectiveness of two delivery methods (intravenous vs. intracerebroventricular) for a gene therapy using AAV9- in a mouse model of SMARD1.
  • Both delivery methods improved survival and body weight, but only the intracerebroventricular method enhanced muscle and motor functions, while intravenous delivery showed partial benefits for cardiac function but not for hindlimb strength.
View Article and Find Full Text PDF

Background: Arterial stiffness is emerging as an independent risk factor for the development of chronic kidney disease. The sodium glucose co-transporter 2 (SGLT2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, have shown promise in reducing arterial stiffness and the risk of cardiovascular and kidney disease in individuals with type 2 diabetes mellitus. Since hyperglycemia contributes to arterial stiffness, we hypothesized that the SGLT2 inhibitor empagliflozin (EMPA) would improve endothelial function, reduce aortic stiffness, and attenuate kidney disease by lowering hyperglycemia in type 2 diabetic female mice (db/db).

View Article and Find Full Text PDF

Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management.

Pharmacol Ther

November 2018

Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA. Electronic address:

Although advances in medical technology and health care have improved the early diagnosis and management for cardiorenal metabolic disorders, the prevalence of obesity, insulin resistance, diabetes, hypertension, dyslipidemia, and kidney disease remains high. Findings from numerous population-based studies, clinical trials, and experimental evidence have consolidated a number of theories for the pathogenesis of cardiorenal metabolic anomalies including resistance to the metabolic action of insulin, abnormal glucose and lipid metabolism, oxidative and nitrosative stress, endoplasmic reticulum (ER) stress, apoptosis, mitochondrial damage, and inflammation. Accumulating evidence has recently suggested a pivotal role for proteotoxicity, the unfavorable effects of poor protein quality control, in the pathophysiology of metabolic dysregulation and related cardiovascular complications.

View Article and Find Full Text PDF