32 results match your criteria: "Department of Zoology Stockholm University Stockholm Sweden.[Affiliation]"

Understanding how ecological communities assemble in relation to natural and human-induced environmental changes is critical, particularly for communities of pollinators that deliver essential ecosystem services. Despite widespread attention to interactions between functional traits and community responses to environmental changes, the importance of sensory traits has received little attention. To address this, we asked whether visual traits of bumblebee communities varied at large geographical scales along a habitat gradient of increased tree cover.

View Article and Find Full Text PDF

Effective population size () is one of the most important parameters in evolutionary biology, as it is linked to the long-term survival capability of species. Therefore, greatly interests conservation geneticists, but it is also very relevant to policymakers, managers, and conservation practitioners. Molecular methods to estimate rely on various assumptions, including no immigration, panmixia, random sampling, absence of spatial genetic structure, and/or mutation-drift equilibrium.

View Article and Find Full Text PDF

The genetic components of the circadian clock have been implicated as involved in photoperiodic regulation of winter diapause across various insect groups, thereby contributing to adaptation to adverse seasonal conditions. So far, the effects of within-population variation in these genes have not been well explored. Here, we present an experimental test of the effects of within-population variation at two circadian genes, and , on photoperiodic responses in the butterfly .

View Article and Find Full Text PDF

There are two primary measures of the amount of genetic variation in a population at a locus: heterozygosity and the number of alleles. Effective population size ( ) provides both an expectation of the amount of heterozygosity in a population at drift-mutation equilibrium and the rate of loss of heterozygosity because of genetic drift. In contrast, the number of alleles in a population at drift-mutation equilibrium is a function of both and census size ( ).

View Article and Find Full Text PDF

Predation is an important ecological process that can significantly impact the maintenance of ecosystem services. In arctic environments, the relative ecological importance of predation is thought to be increasing due to climate change, partly because of increased productivity with rising temperatures. Therefore, understanding predator-prey interactions in arctic ecosystems is vital for the sustainable management of these northern regions.

View Article and Find Full Text PDF

Anthropogenic reintroduction can supplement natural recolonization in reestablishing a species' distribution and abundance. However, both reintroductions and recolonizations can give rise to founder effects that reduce genetic diversity and increase inbreeding, potentially causing the accumulation of genetic load and reduced fitness. Most current populations of the endemic high-arctic Svalbard reindeer () originate from recent reintroductions or recolonizations following regional extirpations due to past overharvesting.

View Article and Find Full Text PDF

Aim: Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities.

Location: A latitudinal gradient spanning .

View Article and Find Full Text PDF

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence.

View Article and Find Full Text PDF

Domesticated animals are generally assumed to display increased sociability toward humans compared to their wild ancestors. Dogs () have a remarkable ability to form social relationships with humans, including lasting attachment, a bond based on emotional dependency. Since it has been specifically suggested that the ability to form attachment with humans evolved post-domestication in dogs, attempts to quantify attachment behavior in wolves () have subsequently been performed.

View Article and Find Full Text PDF

Protandry is a widespread life-history phenomenon describing how males precede females at the site or state of reproduction. In migratory birds, protandry has an important influence on individual fitness, the migratory syndrome, and phenological response to climate change. Despite its significance, accurate analyses on the dynamics of protandry using data sets collected at the breeding site, are lacking.

View Article and Find Full Text PDF

Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises () has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown.

View Article and Find Full Text PDF

The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood.

View Article and Find Full Text PDF

Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.

View Article and Find Full Text PDF

Comparative evidence suggests that adaptive plasticity may evolve as a response to predictable environmental variation. However, less attention has been placed on unpredictable environmental variation, which is considered to affect evolutionary trajectories by increasing phenotypic variation (or bet hedging). Here, we examine the occurrence of bet hedging in egg developmental rates in seven species of annual killifish that originate from a gradient of variation in precipitation rates, under three treatment incubation temperatures (21, 23, and 25°C).

View Article and Find Full Text PDF

Global warming affects breeding phenology of birds differentially with latitude, but there is contrasting evidence about how the changing climate influences the breeding of migrating songbirds at their northern breeding range. We investigate the effect of climate warming on breeding time and breeding success of European pied flycatchers in Sweden during a period of 36 years using nest reports from bird ringing. To account for the latitudinal variation, we divided Sweden into three latitudinal bands (northern, intermediate, and southern).

View Article and Find Full Text PDF

Many insects possess the plastic ability to either develop directly to adulthood, or enter diapause and postpone reproduction until the next year, depending on environmental cues (primarily photoperiod) that signal the amount of time remaining until the end of the growth season. These two alternative pathways often differ in co-adapted life-history traits, for example, with slower development and larger size in individuals headed for diapause. The developmental timing of these differences may be of adaptive importance: If traits diverge early, the potential for phenotypic differences between the pathways is greater, whereas if traits diverge late, the risk may be lower of expressing a maladaptive phenotype if the selective environment changes during development.

View Article and Find Full Text PDF

Many insects that live in temperate zones spend the cold season in a state of dormancy, referred to as diapause. As the insect must rely on resources that were gathered before entering diapause, keeping a low metabolic rate is of utmost importance. Organs that are metabolically expensive to maintain, such as the brain, can therefore become a liability to survival if they are too large.

View Article and Find Full Text PDF

Changes in abiotic factors along altitudinal and latitudinal gradients cause powerful environmental gradients. The topography of alpine areas generates environmental gradients over short distances, and alpine areas are expected to experience greater temperature increase compared to the global average. In this study, we investigate alpha, beta, and gamma diversity, as well as community structure, of vascular plant communities along altitudinal gradients at three latitudes in the Swedish mountains.

View Article and Find Full Text PDF

Understanding how social groups function requires studies on how individuals move across the landscape and interact with each other. Ant supercolonies are extreme cooperative units that may consist of thousands of interconnected nests, and their individuals cooperate over large spatial scales. However, the inner structure of suggested supercolonial (or unicolonial) societies has rarely been extensively studied using both genetic and behavioral analyses.

View Article and Find Full Text PDF

Many animals undergo complete metamorphosis, where larval forms change abruptly in adulthood. Color change during ontogeny is common, but there is little understanding of evolutionary patterns in these changes. Here, we use data on larval and adult color for 246 butterfly species (61% of all species in Australia) to test whether the evolution of color is coupled between life stages.

View Article and Find Full Text PDF

Developing genomic insights is challenging in nonmodel species for which resources are often scarce and prohibitively costly. Here, we explore the potential of a recently established approach using Pool-seq data to generate a de novo genome assembly for mining exons, upon which Pool-seq data are used to estimate population divergence and diversity. We do this for two pairs of sympatric populations of brown trout (): one naturally sympatric set of populations and another pair of populations introduced to a common environment.

View Article and Find Full Text PDF

Genetic turnovers and northern survival during the last glacial maximum in European brown bears.

Ecol Evol

May 2019

Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden.

The current phylogeographic pattern of European brown bears () has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times.

View Article and Find Full Text PDF

Environmental gradients are caused by gradual changes in abiotic factors, which affect species abundances and distributions, and are important for the spatial distribution of biodiversity. One prominent environmental gradient is the altitude gradient. Understanding ecological processes associated with altitude gradients may help us to understand the possible effects climate change could have on species communities.

View Article and Find Full Text PDF

Studies of biodiversity along environmental gradients provide information on how ecological communities change in response to biotic and abiotic factors. For instance, distance to water is associated with several factors that shape the structure and the functioning of ecosystems at a range of spatial scales. We investigated the influence of distance to a perennial water source on ant communities in a semi-arid savanna in northern Botswana.

View Article and Find Full Text PDF