4 results match your criteria: "Department of Zoology Edward Grey Institute University of Oxford Oxford UK.[Affiliation]"
Environmental differences influence the evolutionary divergence of mating signals through selection acting either directly on signal transmission ("sensory drive") or because morphological adaptation to different foraging niches causes divergence in "magic traits" associated with signal production, thus indirectly driving signal evolution. Sensory drive and magic traits both contribute to variation in signal structure, yet we have limited understanding of the relative role of these direct and indirect processes during signal evolution. Using phylogenetic analyses across 276 species of ovenbirds (Aves: Furnariidae), we compared the extent to which song evolution was related to the direct influence of habitat characteristics and the indirect effect of body size and beak size, two potential magic traits in birds.
View Article and Find Full Text PDFOrganisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution.
View Article and Find Full Text PDFThe criteria for species delimitation in birds have long been debated, and several recent studies have proposed new methods for such delimitation. On one side, there is a large consensus of investigators who believe that the only evidence that can be used to delimit species is molecular phylogenetics, and with increasing numbers of markers to gain better support, whereas on the other, there are investigators adopting alternative approaches based largely on phenotypic differences, including in morphology and communication signals. Yet, these methods have little to say about rapid differentiation in specific traits shown to be important in reproductive isolation.
View Article and Find Full Text PDFPopulation-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales.
View Article and Find Full Text PDF