1 results match your criteria: "Department of Statistics and Probability Michigan State University East Lansing Michigan USA.[Affiliation]"
Modeling ecological patterns and processes often involve large-scale and complex high-dimensional spatial data. Due to the nonlinearity and multicollinearity of ecological data, traditional geostatistical methods have faced great challenges in model accuracy. As machine learning has increased our ability to construct models on big data, the main focus of the study is to propose the use of statistical models that hybridize machine learning and spatial interpolation methods to cope with increasingly large-scale and complex ecological data.
View Article and Find Full Text PDF