4 results match your criteria: "Department of Plant and Microbial Biology University of Minnesota St Paul Minnesota USA.[Affiliation]"

Intracellular plant defense against pathogens is mediated by a class of disease resistance genes known as NB-LRRs or NLRs (R genes). Many of the diseases these genes protect against are more prevalent in regions of higher rainfall, which provide better growth conditions for the pathogens. As such, we expect a higher selective pressure for the maintenance and proliferation of R genes in plants adapted to wetter conditions.

View Article and Find Full Text PDF

Much research on the evolution of altruism via kin selection, group selection, and reciprocity focuses on the role of a single locus or quantitative trait. Very few studies have explored how linked selection, or selection at loci neighboring an altruism locus, impacts the evolution of altruism. While linked selection can decrease the efficacy of selection at neighboring loci, it might have other effects including promoting selection for altruism by increasing relatedness in regions of low recombination.

View Article and Find Full Text PDF

High alpine regions are threatened but understudied ecosystems that harbor diverse endemic species, making them an important biome for testing the role of environmental factors in driving functional trait-mediated community assembly processes. We tested the hypothesis that plant community assembly along a climatic and elevation gradient is influenced by shifts in habitat suitability, which drive plant functional, phylogenetic, and spectral diversity. In a high mountain system (2400-3500 m) Región Metropolitana in the central Chilean Andes (33°S, 70°W).

View Article and Find Full Text PDF

Rapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved.

View Article and Find Full Text PDF