4 results match your criteria: "Department of Physics Augsburg University Minneapolis MN USA.[Affiliation]"
Here, we extend the scope of the Gamayunov and Engebretson (2021, hereinafter Paper 1), https://doi.org/10.1029/2021JA029247 work by analyzing the low frequency ultra-low-frequency (ULF) wave power spectra in the Earth's inner magnetosphere during high speed stream (HSS) and quiet solar wind (QSW) driving conditions in the upstream solar wind (SW) and comparing our results to the results of Paper 1, where the statistics of ULF wave power spectra during coronal mass ejections (CMEs) are presented.
View Article and Find Full Text PDFWe investigate the drivers of 40-150 keV hourly electron flux at geostationary orbit (GOES 13) using autoregressive moving average transfer functions (ARMAX) multiple regression models which remove the confounding effect of diurnal cyclicity and allow assessment of each parameter independently. By taking logs of the variables, we create nonlinear models. While many factors show high correlation with flux in single variable analysis (substorms, ULF waves, solar wind velocity (), pressure (), number density () and electric field ( ), IMF , , and ), ARMAX models show substorms are the dominant influence at 40-75 keV and over 20-12 MLT, with little difference seen between disturbed and quiet periods.
View Article and Find Full Text PDFElectromagnetic ion cyclotron (EMIC) waves play important roles in particle loss processes in the magnetosphere. Determining the evolution of EMIC waves as they propagate and how this evolution affects wave-particle interactions requires accurate knowledge of the wave vector, . We present a technique using the curl of the wave magnetic field to determine observationally, enabled by the unique configuration and instrumentation of the Magnetospheric MultiScale (MMS) spacecraft.
View Article and Find Full Text PDFElectromagnetic ion cyclotron (EMIC) waves at large L shells were observed away from the magnetic equator by the Magnetospheric MultiScale (MMS) mission nearly continuously for over four hours on 28 October 2015. During this event, the wave Poynting vector direction systematically changed from parallel to the magnetic field (toward the equator), to bidirectional, to antiparallel (away from the equator). These changes coincide with the shift in the location of the minimum in the magnetic field in the southern hemisphere from poleward to equatorward of MMS.
View Article and Find Full Text PDF