487,557 results match your criteria: "Department of Physics & Center for Soft Matter and Biological Physics[Affiliation]"

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

The use of winglet devices is an efficient technique for enhancing aerodynamic performance. This study investigates the effects of winglet cant angles on both the aerodynamics and aeroacoustics of a commercial wing, comparing them to other significant parameters using a parametric analysis. A Full Factorial Design method is employed to generate a matrix of experiments, facilitating a detailed exploration of flow physics, with lift-to-drag ratio (L/D) and the integral of Acoustic Power Level (APL) as the primary representatives of aerodynamic and acoustic performance, respectively.

View Article and Find Full Text PDF

Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.

View Article and Find Full Text PDF

High-temperature field-free superconducting diode effect in high-T cuprates.

Nat Commun

January 2025

International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.

The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.

View Article and Find Full Text PDF

Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.

View Article and Find Full Text PDF

Photocatalytic asymmetric C-C coupling for CO reduction on dynamically reconstructed Ru-O/Ru-O sites.

Nat Commun

January 2025

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada.

Solar-driven CO reduction to value-added C chemicals is thermodynamically challenging due to multiple complicated steps. The design of active sites and structures for photocatalysts is necessary to improve solar energy efficiency. In this work, atomically dispersed Ru-O sites in RuInO are constructed by interior lattice anchoring of Ru.

View Article and Find Full Text PDF

Anomalous photovoltaics in Janus MoSSe monolayers.

Nat Commun

January 2025

International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.

The anomalous photovoltaic effect (APE) in polar crystals is a promising avenue for overcoming the energy conversion efficiency limits of conventional photoelectric devices utilizing p-n junction architectures. To facilitate effective photocarrier separation and enhance the APE, polar materials need to be thinned down to maximize the depolarization field. Here, we demonstrate Janus MoSSe monolayers (~0.

View Article and Find Full Text PDF

Chiral exceptional point enhanced active tuning and nonreciprocity in micro-resonators.

Light Sci Appl

January 2025

Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.

Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.

View Article and Find Full Text PDF

Recent studies have shown that novel collective behaviors emerge in complex systems due to the presence of higher-order interactions. However, how the collective behavior of a system is influenced by the microscopic organization of its higher-order interactions is not fully understood. In this work, we introduce a way to quantify the overlap among the hyperedges of a higher-order network, and we show that real-world systems exhibit different levels of intra-order hyperedge overlap.

View Article and Find Full Text PDF

Purpose: To characterize the ocular surface microbiota in regular contact lens wearers with dry eyes and assess the effectiveness of reducing bacterial load using a liposomal ozonated oil solution.

Methods: This prospective, longitudinal, controlled study randomized subjects into two groups. Group A (45 subjects) received hydroxypropylmethylcellulose (HPMC, Artific®), while Group B (41 subjects) received ozonated sunflower seed oil with soybean phospholipids (OSSO, Ozonest®).

View Article and Find Full Text PDF

Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.

eNeuro

January 2025

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium

Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.

View Article and Find Full Text PDF

Direct View of Gate-Tunable Miniband Dispersion in Graphene Superlattices Near the Magic Twist Angle.

ACS Nano

January 2025

Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.

Superlattices from twisted graphene mono- and bilayer systems give rise to on-demand many-body states such as Mott insulators and unconventional superconductors. These phenomena are ascribed to a combination of flat bands and strong Coulomb interactions. However, a comprehensive understanding is lacking because the low-energy band structure strongly changes when an electric field is applied to vary the electron filling.

View Article and Find Full Text PDF

Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland.

The quest for small-scale, remotely controlled soft robots has led to the exploration of magnetic and optical fields for inducing shape morphing in soft materials. Magnetic stimulus excels when navigation in confined or optically opaque environments is required. Optical stimulus, in turn, boasts superior spatial precision and individual control over multiple objects.

View Article and Find Full Text PDF

3D quantitative MRI: a fast and reliable method for ventricular volumetry.

World Neurosurg

January 2025

Center for medical image science and visualization (CMIV), Linköping University, Sweden; Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Sweden.

View Article and Find Full Text PDF

Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.

View Article and Find Full Text PDF

Background: An increasing body of evidence has linked fructose intake to colorectal cancer (CRC). African American (AA) adults consume greater quantities of fructose and are more likely to develop right-side colon cancer than European American (EA) adults.

Objective: We examined the hypothesis that fructose consumption leads to epigenomic and transcriptomic differences associated with CRC tumor biology.

View Article and Find Full Text PDF

Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis.

Nanomedicine

January 2025

Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia. Electronic address:

The tear fluids from three healthy individuals and three patients with diabetes mellitus were examined using atomic force microscopy-infrared spectroscopy (AFM-IR) and Fourier transform infrared spectroscopy (FTIR). The dried tear samples showed different surface morphologies: the control sample had a dense network of heart-shaped dendrites, while the diabetic sample had fern-shaped dendrites. By using the AFM-IR technique we identified spatial distribution of constituents, indicating how diabetes affects the structural characteristics of dried tears.

View Article and Find Full Text PDF

The introduction of structural defects can improve the charge separation efficiency of metal-organic frameworks (MOFs)-based photocatalysts, which however come with suboptimal decontamination performance, due to steric hindrance and limited binding capacity of the involved modulators. In this work, hydroxyl group capturing the advantages of both worlds was utilized as new modulator to improve the photocatalytic performance of Fe-based defective MOFs. Benefited from its low steric effect and strong coordination bonding capability, hydroxyl-induced defects in Fe-MOF contributed to a nearly 8-fold increase of rate constant for the photocatalytic removal of hexavalent chromium (Cr(VI)) compared to that of pristine one, which also exceeded the defective one induced by acetic acid as modulator.

View Article and Find Full Text PDF

N-glycosylation-modifications-driven conformational dynamics attenuate substrate inhibition of d-lactonohydrolase.

Bioorg Chem

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 China. Electronic address:

Achieving enzyme catalysis at high substrate concentrations is a substantial challenge in industrial biocatalysis, and the role of glycosylation in post-translational modifications that modulate enzyme substrate inhibition remains poorly understood. This study provides insights into the role of N-glycosylation in substrate inhibition by comparing the catalytic properties of d-lactonohydrolase (d-Lac) derived from Fusarium moniliforme expressed in prokaryotic and eukaryotic hosts. Experimental evidence indicates that recombinant d-Lac expressed in Pichia pastoris (PpLac-WT) exhibits higher hydrolysis rates at a substrate concentration of 400 g/L, with reduced substrate inhibition and enhanced stability compared to the recombinant d-Lac expressed in Escherichia coli (EcLac-WT).

View Article and Find Full Text PDF

The escalating environmental impact of non-biodegradable plastic waste has intensified global efforts to seek sustainable alternatives, with biodegradable polymers from renewable sources emerging as a promising solution. This manuscript provides the current perspectives, challenges, and opportunities within the field of sustainable and biodegradable packaging. Despite a significant market presence of conventional non-biodegradable petrochemical-based plastics, there is a growing trend towards the adoption of bio-based polymers from renewable resources driven by environmental sustainability and regulatory measures.

View Article and Find Full Text PDF

A simple HPLC-UV method for monitoring therapeutic adherence in pulmonary arterial hypertension.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Krakow, Poland; Department of Cardiac and Vascular Diseases, St. John Paul II Hospital, Krakow, Poland.

A considerable percentage of ineffective treatment in pulmonary arterial hypertension (PAH) may be related to subtherapeutic dosage or non-adherence. The aim of the study was to develop a simple analytical method suitable for plasma determination of selected drugs: riociguat (RIO), bosentan (BOS) and macitentan (MAC) administered to PAH patients. An isocratic HPLC-UV system (Spectra Physics - Shimadzu) with a manual injector (50 μL loop) was applied.

View Article and Find Full Text PDF

Magnetic vortex: Fundamental physics, developments, and device applications.

J Phys Condens Matter

January 2025

Institute of Engineering & Management, Department of Basic Science and Humanities, Institute of Engineering & Management, Salt Lake Electronics Complex, Sector V, Salt Lake, Kolkata 700091, India, University of Engineering & Management, University Area, Plot No. III, B/5, New Town Road, Action Area III, Newtown, Kolkata 700160, India, Calcutta, West Bengal, 700091, INDIA.

A magnetic vortex (MV) is one of the fundamental and topologically nontrivial spin textures in condensed matter physics. Magnetic vortices are usually the ground states in geometrically restricted ferromagnets with zero magnetocrystalline anisotropy. Magnetic vortices have recently been proposed for use in a variety of spintronics applications due to their resistance to thermal perturbations, flexibility in changing core polarity, simple patterning procedure, and potential uses in magnetic data storage with substantial density, sensors for the magnetic field, devices for logic operations, and other related fields.

View Article and Find Full Text PDF