4 results match your criteria: "Department of Pharmacology University of Minnesota[Affiliation]"

Inhibiting Ca/calmodulin-dependent protein kinase II (CaMKII) over activation can decrease detrimental cardiac remodeling that leads to dilated cardiomyopathy, cell death, and heart failure. We previously showed that cellular retinoic acid binding protein 1 (Crabp1) knockout mice (CKO) exhibited a more severe isoproterenol (ISO)-induced heart failure and cardiac remodeling phenotype with elevated CaMKII activity in the heart, suggesting a cardiac-protective function of Crabp1 through modulating CaMKII activity. Here we examine whether the highly selective, endogenous ligand of Crabp1, all-trans retinoic acid (RA), can attenuate ISO-induced cardiac dysfunction.

View Article and Find Full Text PDF

All trans retinoic acid (atRA) is one of the most potent therapeutic agents, but extensive toxicity caused by nuclear RA receptors (RARs) limits its clinical application in treating cancer. AtRA also exerts non-genomic activities for which the mechanism remains poorly understood. We determine that cellular retinoic acid binding protein 1 (Crabp1) mediates the non-genomic activity of atRA, and identify two compounds as the ligands of Crabp1 to rapidly and RAR-independently activate extracellular signal regulated kinase 1/2 (ERK1/2).

View Article and Find Full Text PDF

Non-canonical cytoplasmic activities and signal transduction of retinoic acid (RA) expand RA's pleiotropic effects in coordinating the epigenome in embryonic stem cell (ESC). Examples include RA-bound cellular retinoic acid binding protein I, which activates ERK2. By engaging both cytosolic and nuclear mediators, RA can efficiently augment ESC's epigenome.

View Article and Find Full Text PDF

N-(hydroxyphenyl)-arachidonamide (AM404) is an inhibitor of endocannabinoid transport. We examined the effects of AM404 on glutamatergic synaptic transmission using network-driven increases in intracellular Ca2+ concentration ([Ca2+] spikes) as an assay. At a concentration of 1 microM AM404 inhibited [Ca2+]i spiking by 73+/-8%.

View Article and Find Full Text PDF