7 results match your criteria: "Department of Neurology and Fixel Institute[Affiliation]"

Age is the greatest risk factor for many neurodegenerative diseases, yet immune system aging, a contributor to neurodegeneration, is understudied. Genetic variation in the gene affects risk for both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein is implicated in peripheral immune cell signaling, but the effects of an aging immune system on LRRK2 function remain unclear.

View Article and Find Full Text PDF

Genetic variation around the gene affects risk for both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD therapeutics with LRRK2 antisense oligonucleotides (ASOs) now moving toward clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious.

View Article and Find Full Text PDF

Deposition of misfolded α-synuclein (αsyn) in the enteric nervous system (ENS) is found in multiple neurodegenerative diseases. It is hypothesized that ENS synucleinopathy contributes to both the pathogenesis and non-motor morbidity in Parkinson's Disease (PD), but the cellular and molecular mechanisms that shape enteric histopathology and dysfunction are poorly understood. Here, we demonstrate that ENS-resident macrophages, which play a critical role in maintaining ENS homeostasis, initially respond to enteric neuronal αsyn pathology by upregulating machinery for complement-mediated engulfment.

View Article and Find Full Text PDF

LRRK2 negatively regulates glucose tolerance via regulation of membrane translocation of GLUT4 in adipocytes.

FEBS Open Bio

December 2023

Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.

Epidemiological studies have shown that abnormalities of glucose metabolism are involved in leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD). However, the physiological significance of this association is unclear. In the present study, we investigated the effect of LRRK2 on high-fat diet (HFD)-induced glucose intolerance using Lrrk2-knockout (KO) mice.

View Article and Find Full Text PDF

The gut brain axis (GBA), a bidirectional communication pathway has often been linked to health and disease, and gut microbiota (GM), a key component of this pathway shown to be altered in Parkinson's disease (PD), are suggested to contribute to the pathogenesis of PD. There are few studies that report the impact of oral medication therapy on GM, however, there are even fewer studies that discuss the impact of other treatments such as device assisted therapies (DAT) including deep brain stimulation (DBS), levodopa-carbidopa intestinal gel infusion (LCIG) and photobiomodulation (PBM) and how these might impact GM. Here, we review the literature and summarize findings of the potential contributions of GM to the heterogenous clinical response to pharmaceutical therapies among individuals with PD.

View Article and Find Full Text PDF

Biovalue in Human Brain Banking: Applications and Challenges for Research in Neurodegenerative Diseases.

Methods Mol Biol

December 2021

Department of Neurology and Fixel Institute for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA.

Brain banking occupies a central role for the advancement of the study of human neurodegenerative and neuropsychiatric diseases. The smooth functioning and effectiveness of a brain bank is largely a multidisciplinary effort and requires the cooperation and participation of several players including neurologists, neuropathologists, and research coordinators to guarantee that donated tissue is properly processed and archived. If properly run, brain banks can ultimately lay the foundation for new brain research and pioneer the discovery of new therapies for a variety of neurological diseases.

View Article and Find Full Text PDF

The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior.

View Article and Find Full Text PDF