4 results match your criteria: "Department of Molecular Medicine and Pathology University of Auckland Auckland New Zealand.[Affiliation]"
Preptin is derived from the cleavage of the E-peptide of pro-insulin-like growth factor (IGF)-II and is an insulin secretagogue. Observational studies have linked elevated circulating preptin to metabolic dysfunction in humans; however, a causal role for preptin in metabolic dysfunction has not been established. Additionally, preptin can promote osteoblast proliferation and differentiation, suggesting a link with skeletal health.
View Article and Find Full Text PDFExtracellular vesicle (EV) research has grown rapidly in recent years, largely due to the potential use of EVs as liquid biopsy biomarkers or therapeutics. However, in-depth characterisation and validation of EVs produced using conventional cultures can be challenging due to the large area of cell monolayers and volumes of culture media required. To overcome this obstacle, multiple bioreactor designs have been tested for EV production with varying success, but the consistency of EVs produced over time in these systems has not been reported previously.
View Article and Find Full Text PDFIn recent years, attention has turned to examining the biodistribution of EVs in recipient animals to bridge between knowledge of EV function in vitro and in vivo. We undertook a systematic review of the literature to summarize the biodistribution of EVs following administration into animals. There were time-dependent changes in the biodistribution of small-EVs which were most abundant in the liver.
View Article and Find Full Text PDFJBMR Plus
May 2019
Department of Reconstructive Sciences UConn Health Farmington CT USA.
BMPs are used in various clinical applications to promote bone formation. The limited success of the BMPs in clinical settings and supraphysiological doses required for their effects prompted us to evaluate the influence of other signaling molecules, specifically platelet-derived growth factor (PDGF) on BMP2-induced osteogenesis. Periosteal cells make a major contribution to fracture healing.
View Article and Find Full Text PDF