11 results match your criteria: "Department of Materials Imperial College London[Affiliation]"
Lithium-sulfur batteries (LSBs) are a promising alternative to lithium-ion batteries because sulfur is highly abundant and exhibits a high theoretical capacity (1675 mA h g). However, polysulfide shuttle and other challenges have made it difficult for LSBs to be commercialised. Here, a sulfur/carbon (S/C) composite was synthesised and cathodes were fabricated scalable melt diffusion and slurry casting methods.
View Article and Find Full Text PDFAromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate.
View Article and Find Full Text PDFNat Commun
August 2022
Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China.
Ultralight, ultrastrong, and supertough graphene aerogel metamaterials combining with multi-functionalities are promising for future military and domestic applications. However, the unsatisfactory mechanical performances and lack of the multiscale structural regulation still impede the development of graphene aerogels. Herein, we demonstrate a laser-engraving strategy toward graphene meta-aerogels (GmAs) with unusual characters.
View Article and Find Full Text PDFWe propose a novel image analysis framework to automate analysis of X-ray microtomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture.
View Article and Find Full Text PDFBioeng Transl Med
May 2022
Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" Politecnico di Milano Milano Italy.
Musculoskeletal defects are an enormous healthcare burden and source of pain and disability for individuals. With an aging population, the proportion of individuals living with these medical indications will increase. Simultaneously, there is pressure on healthcare providers to source efficient solutions, which are cheaper and less invasive than conventional technology.
View Article and Find Full Text PDFChemistryOpen
February 2018
Department of Chemistry University of Bath, Claverton Down Bath BA2 7AY UK.
The encapsulation of CdSe nanocrystals within single-walled carbon nanotube (SWNT) cavities of varying dimensions at elevated temperatures under strictly air-tight conditions is described for the first time. The structures of CdSe nanocrystals under confinement inside SWNTs was established in a comprehensive study, combining both experimental and DFT theoretical investigations. The calculated binding energies show that all considered polymorphs [(3:3), (4:4), and (4:2)] may be obtained experimentally.
View Article and Find Full Text PDFJ Mater Chem B
September 2016
Department of Materials Imperial College London, SW7 2AZ, London, UK.
Bioglass® was the first synthetic material capable of bonding with bone without fibrous encapsulation, and fulfils some of the criteria of an ideal synthetic bone graft. However, it is brittle and toughness is required. Here, we investigated hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) as a potential new generation of scaffold materials.
View Article and Find Full Text PDFFracture toughness of LaSrCoFeO (LSCF) in both bulk and film forms after sintering at 900°C to 1200°C was measured using both single-edge V-notched beam (SEVNB) 3-point bending and Berkovich indentation. FIB/SEM slice-and-view observation after indentation revealed the presence of Palmqvist radial crack systems after indentation of the bulk materials. Based on crack length measurements, the fracture toughness of bulk LSCF specimens was determined to be in the range 0.
View Article and Find Full Text PDFNative tissues are typically heterogeneous and hierarchically organized, and generating scaffolds that can mimic these properties is critical for tissue engineering applications. By uniquely combining controlled radical polymerization (CRP), end-functionalization of polymers, and advanced electrospinning techniques, a modular and versatile approach is introduced to generate scaffolds with spatially organized functionality. Poly-ε-caprolactone is end functionalized with either a polymerization-initiating group or a cell-binding peptide motif cyclic Arg-Gly-Asp-Ser (cRGDS), and are each sequentially electrospun to produce zonally discrete bilayers within a continuous fiber scaffold.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2015
Department of Materials Imperial College London, SW7 2AZ, London, UK.
Sol-gel hybrids are inorganic/organic co-networks with nanoscale interactions between the components leading to unique synergistic mechanical properties, which can be tailored, via a selection of the organic moiety. Methacrylate based polymers present several benefits for class II hybrids (which exhibit formal covalent bonding between the networks) as they introduce great versatility and can be designed with a variety of chemical side-groups, structures and morphologies. In this study, the effect of high cross-linking density polymers on the structure-property relationships of hybrids generated using poly(3-trimethoxysilylpropyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) was investigated.
View Article and Find Full Text PDFThe aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70-90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability.
View Article and Find Full Text PDF