1,103 results match your criteria: "Department of Marine Sciences University of Gothenburg Stroemstad Sweden.[Affiliation]"

Combined effect of salinity and hypoxia on digestive enzymes and intestinal microbiota in the oyster Crassostrea hongkongensis.

Environ Pollut

August 2023

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:

Anthropologic activities caused frequent eutrophication in coastal and estuarine waters, resulting in diel-cycling hypoxia. Given global climate change, extreme weather events often occur, thus salinity fluctuation frequently breaks out in these waters. This study aimed to evaluate the combined effects of salinity and hypoxia on intestinal microbiota and digestive enzymes of Crassostrea hongkongensis.

View Article and Find Full Text PDF

Allozymes present several classical examples of divergent selection, including the variation in the cytosolic aspartate aminotransferase (AAT) in the intertidal snails Littorina saxatilis. AAT is a part of the asparate-malate shuttle, in the interidal molluscs involved in the anaerobic respiration during desiccation. Previous allozyme studies reported the sharp gradient in the frequencies of the AATand the AAT alleles between the low and high shores in the Northern Europe and the differences in their enzymatic activity, supporting the role of AAT in adaptation to desiccation.

View Article and Find Full Text PDF

Progress in molecular methods has enabled the monitoring of bacterial populations in time. Nevertheless, understanding community dynamics and its links with ecosystem functioning remains challenging due to the tremendous diversity of microorganisms. Conceptual frameworks that make sense of time series of taxonomically rich bacterial communities, regarding their potential ecological function, are needed.

View Article and Find Full Text PDF

Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter-annual Arabidopsis thaliana populations from a wide climactic gradient in Norway.

View Article and Find Full Text PDF

The extractive industry consumes vast amounts of energy and is a major contributor to greenhouse gas (GHG) emissions. However, its climatic impacts have not yet been fully accounted for. In this study, we estimated the GHG emissions from extractive activities globally with a focus on China, and assessed the main emission drivers.

View Article and Find Full Text PDF

How many metazoan species live in the world's largest mineral exploration region?

Curr Biol

June 2023

Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK.

The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking.

View Article and Find Full Text PDF

Long-Term Pollution Does Not Inhibit Denitrification and DNRA by Adapted Benthic Microbial Communities.

Microb Ecol

November 2023

Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden.

Denitrification in sediments is a key microbial process that removes excess fixed nitrogen, while dissimilatory nitrate reduction to ammonium (DNRA) converts nitrate to ammonium. Although microorganisms are responsible for essential nitrogen (N) cycling, it is not yet fully understood how these microbially mediated processes respond to toxic hydrophobic organic compounds (HOCs) and metals. In this study, we sampled long-term polluted sediment from the outer harbor of Oskarshamn (Baltic Sea), measured denitrification and DNRA rates, and analyzed taxonomic structure and N-cycling genes of microbial communities using metagenomics.

View Article and Find Full Text PDF

Ocean acidification (OA) may either increase or have a neutral effect on the calcification in shrimp's exoskeleton. However, investigations on changes in the carbon composition of shrimp's exoskeletons under OA are lacking. We exposed juvenile Pacific white shrimps to target pHs of 8.

View Article and Find Full Text PDF

Why species that in their core areas mainly reproduce sexually become enriched with clones in marginal populations ("geographic parthenogenesis") remains unclear. Earlier hypotheses have emphasized that selection might promote clonality because it protects locally adapted genotypes. On the other hand, it also hampers recombination and adaptation to changing conditions.

View Article and Find Full Text PDF

Earth's life-sustaining oceans harbor diverse bacterial communities that display varying composition across time and space. While particular patterns of variation have been linked to a range of factors, unifying rules are lacking, preventing the prediction of future changes. Here, analyzing the distribution of fast- and slow-growing bacteria in ocean datasets spanning seasons, latitude, and depth, we show that higher seawater temperatures universally favor slower-growing taxa, in agreement with theoretical predictions of how temperature-dependent growth rates differentially modulate the impact of mortality on species abundances.

View Article and Find Full Text PDF

Emerging niche clustering results from both competition and predation.

Ecol Lett

July 2023

Institute of Ecology and Environmental Sciences (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Paris, France.

Understanding species coexistence has been a central question in ecology for decades, and the notion that competing species need to differ in their ecological niche for stable coexistence has dominated. Recent theoretical and empirical work suggests differently. Species can also escape competitive exclusion by being similar, leading to clusters of species with similar traits.

View Article and Find Full Text PDF

Population variability in thermal performance of pre-spawning adult Chinook salmon.

Conserv Physiol

May 2023

Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA.

Climate change is causing large declines in many Pacific salmon populations. In particular, warm rivers are associated with high levels of premature mortality in migrating adults. The Fraser River watershed in British Columbia, Canada, supports some of the largest Chinook salmon () runs in the world.

View Article and Find Full Text PDF

Southern ocean carbon and heat impact on climate.

Philos Trans A Math Phys Eng Sci

June 2023

British Antarctic Survey, Cambridge, UK.

The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent processes at scales that are not well captured in current Earth system models.

View Article and Find Full Text PDF

Quantifying the strength and efficiency of the Southern Ocean biological carbon pump (BCP) and its response to predicted changes in the Earth's climate is fundamental to our ability to predict long-term changes in the global carbon cycle and, by extension, the impact of continued anthropogenic perturbation of atmospheric CO. There is little agreement, however, in climate model projections of the sensitivity of the Southern Ocean BCP to climate change, with a lack of consensus in even the direction of predicted change, highlighting a gap in our understanding of a major planetary carbon flux. In this review, we summarize relevant research that highlights the important role of fine-scale dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical responses that impact the characteristics of the seasonal cycle of phytoplankton and by extension the BCP.

View Article and Find Full Text PDF

Interactions between the upper ocean and air-ice-ocean fluxes in the Southern Ocean play a critical role in global climate by impacting the overturning circulation and oceanic heat and carbon uptake. Remote and challenging conditions have led to sparse observational coverage, while ongoing field programmes often fail to collect sufficient information in the right place or at the time-space scales required to constrain the variability occurring in the coupled ocean-atmosphere system. Only within the last 10 years have we been able to directly observe and assess the role of the fine-scale ocean and rapidly evolving atmospheric marine boundary layer on the upper limb of the Southern Ocean's overturning circulation.

View Article and Find Full Text PDF

Speciation entails a reduction in gene flow between lineages. The rates at which genomic regions become isolated varies across space and time. Barrier markers are linked to putative genes involved in (processes of) reproductive isolation, and, when observed over two transects, indicate species-wide processes.

View Article and Find Full Text PDF

Misuse and overuse of antibiotics in aquaculture has proven to be an unsustainable practice leading to increased bacterial resistance. An alternative strategy involves the inclusion of immunostimulants in fish diets, especially fungal and herbal compounds already authorized for human consumption, hence without environmental or public health concerns. In this study, we used a holistic and cross-disciplinary pipeline to assess the immunostimulatory properties of two fungi: Trametes versicolor and Ganoderma lucidum; one herbal supplement, capsaicin in the form of Espelette pepper (Capsicum annuum), and a combination of these fungal and herbal additives on rainbow trout (Oncorhynchus mykiss).

View Article and Find Full Text PDF

Improving the genome and proteome annotations of the marine model diatom using a proteogenomics strategy.

Mar Life Sci Technol

February 2023

State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China.

Unlabelled: Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20% of global carbon fixation and 40% of marine primary productivity; thus, they are essential for global carbon biogeochemical cycling and climate. The availability of ten diatom genome sequences has facilitated evolutionary, biological and ecological research over the past decade; however, a complimentary map of the diatom proteome with direct measurements of proteins and peptides is still lacking. Here, we present a proteome map of the model marine diatom using high-resolution mass spectrometry combined with a proteogenomic strategy.

View Article and Find Full Text PDF

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field.

View Article and Find Full Text PDF

Burial of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) in deep-sea sediments contributes to 60% of their historical emissions. Yet, empirical data on their occurrence in the deep-ocean is scarce. Estimates of the deep-ocean POP sink are therefore uncertain.

View Article and Find Full Text PDF

Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community.

View Article and Find Full Text PDF

The ethanol-induced precipitation after enzymatic hydrolysis commonly used for sulfated polysaccharide extraction from marine resources wastes a large amount of proteins. Here, possible extraction of fish protein hydrolysates (FPH) from the ethanol residue of sulfated polysaccharide precipitation from head, bone, and skin of skipjack tuna is investigated. Antioxidant, antibacterial, angiotensin I-converting enzyme (ACE) inhibitory activities and functional properties of the recovered FPHs are also evaluated.

View Article and Find Full Text PDF

The possibility of replacing the very time and resource demanding salting out (SO) method with isoelectric precipitation (IP) during collagen extraction from common starfish and lumpfish was investigated. The effect of IP on yield, structural and functional properties of the collagens was therefore compared with SO. Application of IP resulted in a higher or similar collagen mass yield compared with SO from starfish and lumpfish, respectively.

View Article and Find Full Text PDF

Ultrasonic-assisted enzymatic extraction of sulfated polysaccharide from Skipjack tuna by-products.

Ultrason Sonochem

May 2023

Department of Life Sciences-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden. Electronic address:

The effect of ultrasound pretreatment on extraction efficiency of sulfate polysaccharides (SPs) using alcalase from different by-products of Skipjack tuna including head, bone and skin was evaluated. Structural, functional, antioxidant and antibacterial properties of the recovered SPs using the ultrasound-enzyme and enzymatic method were also investigated. Ultrasound pretreatment significantly increased the extraction yield of SPs from all the three by-products compared with the conventional enzymatic method.

View Article and Find Full Text PDF

The Andean fever tree ( L.; Rubiaceae) is a source of bioactive quinine alkaloids used to treat malaria. Vahl is a valuable cash crop within its native range in northwestern South America, however, genomic resources are lacking.

View Article and Find Full Text PDF