9 results match your criteria: "Department of Integrative Biology University of Texas at Austin Austin Texas USA.[Affiliation]"

Gene flow is important for maintaining the genetic diversity required for adaptation to environmental disturbances, though gene flow may be limited by site fidelity in small coastal sharks. Bonnethead sharks ()-a small coastal hammerhead species-demonstrate site fidelity, as females are philopatric while males migrate to mediate gene flow. Consequently, bonnetheads demonstrate population divergence with distance, and Atlantic populations are genetically distinct from those of the Gulf of Mexico.

View Article and Find Full Text PDF

Plants adjust their allocation to different organs based on nutrient supply. In some plant species, symbioses with nitrogen-fixing bacteria that live in root nodules provide an alternate pathway for nitrogen acquisition. Does access to nitrogen-fixing bacteria modify plants' biomass allocation? We hypothesized that access to nitrogen-fixing bacteria would have the same effect on allocation to aboveground versus belowground tissues as access to plentiful soil nitrogen.

View Article and Find Full Text PDF

Discordance between mitochondrial and nuclear DNA is common among animals and can be the result of a number of evolutionary processes, including incomplete lineage sorting and introgression. Particularly relevant in contact zones, mitonuclear discordance is expected because the mitochondrial genome is haploid and primarily uniparentally inherited, whereas nuclear loci are evolving at slower rates. In addition, when closely related taxa come together in hybrid zones, the distribution of diagnostic phenotypic characters and their concordance with the mitochondrial or nuclear lineages can also inform on historical and ongoing dynamics within hybrid zones.

View Article and Find Full Text PDF

Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions.

View Article and Find Full Text PDF

As coral reefs continue to decline due to climate change, the role of coral epigenetics (specifically, gene body methylation, GBM) in coral acclimatization warrants investigation. The evidence is currently conflicting. In diverse animal phyla, the baseline GBM level is associated with gene function: continuously expressed "housekeeping" genes are typically highly methylated, while inducible context-dependent genes have low or no methylation at all.

View Article and Find Full Text PDF

Plant secondary metabolites (PSMs) are produced by plants to overcome environmental challenges, both biotic and abiotic. We were interested in characterizing how autumn seasonality in temperate and subtropical climates affects overall PSM production in comparison to herbivory. Herbivory is commonly measured between spring to summer when plants have high resource availability and prioritize growth and reproduction.

View Article and Find Full Text PDF

Host-parasite coevolution may lead to patterns of local adaptation in either the host or parasite. For parasites with complex multi-host life cycles, this coevolution may be more challenging as they must adapt to multiple geographically varying hosts. The tapeworm exhibits some local adaptation to its second intermediate host, threespine stickleback, to which the parasite is strictly specialized.

View Article and Find Full Text PDF

Plants produce diverse chemical defenses with contrasting effects on different insect herbivores. Deploying herbivore-specific responses can help plants increase their defensive efficiency. Here, we explore how variation in induced plant responses correlates with herbivore species, order, feeding guild, and level of specialization.

View Article and Find Full Text PDF

The integration of theory and data drives progress in science, but a persistent barrier to such integration in ecology and evolutionary biology is that theory is often developed and expressed in the form of mathematical models that can feel daunting and inaccessible for students and empiricists with variable quantitative training and attitudes towards math. A promising way to make mathematical models more approachable is to embed them into interactive tools with which one can visually evaluate model structures and directly explore model outcomes through simulation. To promote such interactive learning of quantitative models, we developed EcoEvoApps, a collection of free, open-source, and multilingual R/Shiny apps that include model overviews, interactive model simulations, and code to implement these models directly in R.

View Article and Find Full Text PDF