4 results match your criteria: "Department of Integrative Biology University of Texas Austin Texas USA.[Affiliation]"

Social interactions can drive distinct gene expression profiles which may vary by social context. Here we use female sailfin molly fish () to identify genomic profiles associated with preference behavior in distinct social contexts: male interactions (mate choice) versus female interactions (shoaling partner preference). We measured the behavior of 15 females interacting in a non-contact environment with either two males or two females for 30 min followed by whole-brain transcriptomic profiling by RNA sequencing.

View Article and Find Full Text PDF

Species distribution models (SDMs) are an increasingly important tool for conservation particularly for difficult-to-study locations and with understudied fauna. Our aims were to (1) use SDMs and ensemble SDMs to predict the distribution of freshwater mussels in the Pánuco River Basin in Central México; (2) determine habitat factors shaping freshwater mussel occurrence; and (3) use predicted occupancy across a range of taxa to identify freshwater mussel biodiversity hotspots to guide conservation and management. In the Pánuco River Basin, we modeled the distributions of 11 freshwater mussel species using an ensemble approach, wherein multiple SDM methodologies were combined to create a single ensemble map of predicted occupancy.

View Article and Find Full Text PDF

Colonial organisms host a large diversity of symbionts (collectively, parasites, mutualists, and commensals) that use vertical transmission (from parent colony to offspring colony) and/or horizontal transmission to disperse between host colonies. The early life of some colonies, characterized by the dispersal and establishment of solitary individuals, may constrain vertical transmission and favor horizontal transmission between large established colonies. We explore this possibility with the miniature cockroach , a symbiont of leaf-cutter ants and the mutualist fungal gardens they cultivate.

View Article and Find Full Text PDF

Population genomics has significantly increased our ability to make inferences about microevolutionary processes and demographic histories, which have the potential to improve protection and recovery of imperiled species. Freshwater mussels (Bivalvia: Unionida) represent one of the most imperiled groups of organisms globally. Despite systemic decline of mussel abundance and diversity, studies evaluating spatiotemporal changes in distribution, demographic histories, and ecological factors that threaten long-term persistence of imperiled species remain lacking.

View Article and Find Full Text PDF