4 results match your criteria: "Department of Forestry and Environmental Conservation Clemson University Clemson South Carolina USA.[Affiliation]"
Predators impose top-down forces on prey populations, with the strength of those effects often varying over space and time and among demographic groups. In ungulates, predation risk is typically greatest for neonatal offspring, with some suggesting that predators can key in on adult activity to locate hidden neonates. However, few field studies to date have been able to directly assess the influence of maternal care on ungulate neonate survival.
View Article and Find Full Text PDFResource pulses are ecologically important phenomenon that occur in most ecosystems globally. Following optimal foraging theory, many consumers switch to pulsatile foods when available, examples of which include fruit mast and vulnerable young prey. Yet how the availability of resource pulses shapes the ecology of predators is still an emerging area of research; and how much individual variation there is in response to pulses is not well understood.
View Article and Find Full Text PDFEcol Evol
November 2023
Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA.
Identifying environmental drivers of demographic variation is key to predicting community-level impacts in response to global change. Climate conditions can synchronize population trends and can occur both spatially for populations of the same species, and across multiple species within the same local community. The aim of this study was to investigate patterns of temporal variation in survival for freshwater fish communities in two geographically close but isolated sites and to understand the amount of variation accounted for by abiotic covariates including metrics of water temperature and stream flow.
View Article and Find Full Text PDFTemperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non-native forest pest (L.
View Article and Find Full Text PDF