11 results match your criteria: "Department of Forest Sciences University of Helsinki Helsinki Finland.[Affiliation]"

Article Synopsis
  • DNA methylation is vital for regulating transposable elements and gene expression, influencing plant stress responses; traditional quantification methods are often inaccurate.
  • Advances in long-read sequencing, particularly using Oxford Nanopore Technologies, allow for more accurate real-time detection of methylation across various contexts in plants.
  • This research generated methylation profiles for two maple species, revealing significant patterns related to transposable elements and helping understand gene family dynamics and nutrient stress responses in angiosperms.
View Article and Find Full Text PDF

Wetland habitats are changing under multiple anthropogenic pressures. Nutrient leakage and pollution modify physico-chemical state of wetlands and affect the ecosystem through bottom-up processes, while alien predators affect the ecosystems in a top-down manner. Boreal wetlands are important breeding areas for several waterbird species, the abundances of which potentially reflect both bottom-up and top-down ecosystem processes.

View Article and Find Full Text PDF

Lichens are combinations of two symbiotic organisms, a green alga or cyanobacterium and a fungus. They grow in nearly all terrestrial ecosystems and survive in habitats, which are very dry or cold, or too poor in nutrients to maintain vegetation growth. Because lichens grow on visible surfaces and exhibit spectral properties, which are clearly different from, for example, vegetation, it is possible to distinguish them in remote sensing data.

View Article and Find Full Text PDF

Wetlands belong to the globally most threatened habitats, and organisms depending on them are of conservation concern. Wetland destruction and quality loss may affect negatively also boreal breeding ducks in which habitat selection often needs balancing between important determinants of habitat suitability. In Finland duck population trajectories are habitat-specific, while the reasons behind are poorly understood.

View Article and Find Full Text PDF

Boreal peatlands store ~25 % of global soil organic carbon and host many endangered species; however, they face degradation due to climate change and anthropogenic drainage. In boreal peatlands, vegetation indicates ecohydrological conditions of the ecosystem. Applying remote sensing would enable spatially and temporally continuous monitoring of peatland vegetation.

View Article and Find Full Text PDF

Tropical Peatland Hydrology Simulated With a Global Land Surface Model.

J Adv Model Earth Syst

March 2022

Department of Earth and Environmental Sciences KU Leuven Heverlee Belgium.

Tropical peatlands are among the most carbon-dense ecosystems on Earth, and their water storage dynamics strongly control these carbon stocks. The hydrological functioning of tropical peatlands differs from that of northern peatlands, which has not yet been accounted for in global land surface models (LSMs). Here, we integrated tropical peat-specific hydrology modules into a global LSM for the first time, by utilizing the peatland-specific model structure adaptation (PEATCLSM) of the NASA Catchment Land Surface Model (CLSM).

View Article and Find Full Text PDF

Large herbivores often co-occur and share plant resources with herbivorous insects in grassland ecosystems; yet, how they interact with each other remains poorly understood. We conducted a series of field experiments to investigate whether and how large domestic herbivores (sheep; ) may affect the abundance of a common herbivorous insect (aphid; ) in a temperate grassland of northeast China. Our exclosure experiment showed that 3 years (2010-2012) of sheep grazing had led to 86% higher aphid abundance compared with ungrazed sites.

View Article and Find Full Text PDF

Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities.

View Article and Find Full Text PDF

It is not well understood what determines the degree of supercooling of apoplastic sap in trees, although it determines the number and duration of annual freeze-thaw cycles in a given environment. We studied the linkage between apoplastic ice nucleation temperature, tree water status, and conduit size. We used branches of 10 gymnosperms and 16 angiosperms collected from an arboretum in Helsinki (Finland) in winter and spring.

View Article and Find Full Text PDF

Ungulate grazing and trampling strongly affect pastures and ecosystems throughout the world. Ecological population models are used for studying these systems and determining the guidelines for sustainable and economically viable management. However, the effect of trampling and other resource wastage is either not taken into account or quantified with data in earlier models.

View Article and Find Full Text PDF

Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics.

View Article and Find Full Text PDF