26 results match your criteria: "Department of Entomology University of California[Affiliation]"

Desertification is a major threat to biodiversity in arid areas of the world, partly because many organisms in these regions already exist at or near the limits of their movement and physiology. Here, we used molecular data to investigate patterns of persistence and dispersal in an ecologically and economically important carpenter bee ( Lepeletier) found throughout the semiarid Caatinga region of Brazil. We used a genome-wide approach (double digest restriction-site associated DNA, ddRAD) to gather genetic data from bees sampled from eight sites within a semiarid region subject to desertification in Northeastern Brazil.

View Article and Find Full Text PDF

Background And Aims: Co-infections occur when two or more different types of pathogens infect the same host at the same time. Initially, it may develop via a primary infection and then later segue into a superinfection. Although some research suggests that coinfections do not affect the effect of disease outcomes, alternate evidence says otherwise.

View Article and Find Full Text PDF

Electronic recording of lifetime locomotory activity patterns of adult medflies.

PLoS One

July 2022

Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece.

Age-specific and diurnal patterns of locomotory activity, can be considered as biomarkers of aging in model organisms and vary across the lifetime of individuals. Τhe Mediterranean fruit fly (medfly), Ceratitis capitata, is a commonly used model-species in studies regarding demography and aging. In the present study, we introduce a modification of the automated locomotory activity electronic device LAM25system (Locomotory Activity Monitor)-Trikinetics, commonly used in short time studies, to record the daily locomotory activity patterns of adult medflies throughout the life.

View Article and Find Full Text PDF

Studying patterns of population structure across the landscape sheds light on dispersal and demographic processes, which helps to inform conservation decisions. Here, we study how social organization and landscape factors affect spatial patterns of genetic differentiation in an ant species living in mountainous regions. Using genome-wide SNP markers, we assess population structure in the Alpine silver ant, .

View Article and Find Full Text PDF

Bumble bees (genus ) are important pollinators with more than 260 species found worldwide, many of which are in decline. Twenty-five species occur in California with the highest species abundance and diversity found in coastal, northern, and montane regions. No recent studies have examined California bumble bee diversity across large spatial scales nor explored contemporary community composition patterns across the state.

View Article and Find Full Text PDF

Invasive social insects rank among the most damaging of terrestrial species. They are responsible for extensive damage and severely threaten the biodiversity of environments where they are introduced. Variation in colony social form commonly occurs in introduced populations of yellowjacket wasps (genus ).

View Article and Find Full Text PDF

Rapid advances in genomic tools for use in ecological contexts and non-model systems allow unprecedented insight into interactions that occur beyond direct observation. We developed an approach that couples microbial forensics with molecular dietary analysis to identify species interactions and scavenging by invasive rats on native and introduced birds in Hawaii. First, we characterized bacterial signatures of bird carcass decay by conducting 16S rRNA high-throughput sequencing on chicken () tissues collected over an 11-day decomposition study in natural Hawaiian habitats.

View Article and Find Full Text PDF

Fluctuating asymmetry (FA) is hypothesized to be a useful predictor of population canalization, especially for organisms at risk from environmental change.Identification of traits that meet statistical criteria as FA measures remains a challenge.Here, a laboratory experiment subjected immature butterflies () to diet and temperature conditions of varying stress levels.

View Article and Find Full Text PDF

Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control.

Ecol Evol

October 2020

Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA) Departamento de Ecología Genética y Evolución Universidad de Buenos Aires Buenos Aires Argentina.

Cryptic taxa have often been observed in the form of host-associated species that diverged as the result of adaptation to alternate host plants. Untangling cryptic diversity in species complexes that encompass invasive species is a mandatory task for pest management. Moreover, investigating the evolutionary history of a species complex may help to understand the drivers of their diversification.

View Article and Find Full Text PDF

Gene drives based on CRISPR/Cas9 have the potential to reduce the enormous harm inflicted by crop pests and insect vectors of human disease, as well as to bolster valued species. In contrast with extensive empirical and theoretical studies in diploid organisms, little is known about CRISPR gene drive in haplodiploids, despite their immense global impacts as pollinators, pests, natural enemies of pests, and invasive species in native habitats. Here, we analyze mathematical models demonstrating that, in principle, CRISPR homing gene drive can work in haplodiploids, as well as at sex-linked loci in diploids.

View Article and Find Full Text PDF

Theory predicts that network characteristics may help anticipate how populations and communities respond to extreme climatic events, but local environmental context may also influence responses to extreme events. For example, altered fire regimes in many ecosystems may significantly affect the context for how species and communities respond to changing climate. In this study, I tested whether the responses of a pollinator community to extreme drought were influenced by the surrounding diversity of fire histories (pyrodiversity) which can influence their interaction networks via changing partner availability.

View Article and Find Full Text PDF

Improved efficiency of Markov chain Monte Carlo facilitates all aspects of statistical analysis with Bayesian hierarchical models. Identifying strategies to improve MCMC performance is becoming increasingly crucial as the complexity of models, and the run times to fit them, increases. We evaluate different strategies for improving MCMC efficiency using the open-source software NIMBLE (R package nimble) using common ecological models of species occurrence and abundance as examples.

View Article and Find Full Text PDF

Negative frequency-dependent selection (NFDS) has been shown to maintain polymorphism in a diverse array of traits. The action of NFDS has been confirmed through modeling, experimental approaches, and genetic analyses. In this study, we investigated NFDS in the wild using morph-frequency changes spanning a 20-year period from over 30 dimorphic populations of .

View Article and Find Full Text PDF

The Streptophyta include unicellular and multicellular charophyte green algae and land plants. Colonization of the terrestrial habitat by land plants is a major evolutionary event that has transformed the planet. So far, lack of genome information on unicellular charophyte algae hinders the understanding of the origin and the evolution from unicellular to multicellular life in Streptophyta.

View Article and Find Full Text PDF

Parasitic wasps are among the most species-rich groups on Earth. A major cause of this diversity may be local adaptation to host species. However, little is known about variation in host specificity among populations within parasitoid species.

View Article and Find Full Text PDF

An important and understudied question in sexual selection is how females evaluate information from multiple secondary sexual traits (SSTs), particularly when expression of traits is phenotypically uncorrelated. We performed mate choice experiments on zebra finches ( Gould) to evaluate two hypotheses: preference shifts (obstacles to choice using one trait increase chooser reliance on others) and trait synergisms (choice based on the sum/product of two or more independently varying traits). The first experiment, which employed males raised on diets that impact SST expression, supported the trait synergism hypothesis: overall, male pairing success was best predicted by synergisms involving beak color and cheek patch size.

View Article and Find Full Text PDF

Ongoing speciation in the most important African malaria vectors gives rise to cryptic populations, which differ remarkably in their behavior, ecology, and capacity to vector malaria parasites. Understanding the population structure and the drivers of genetic differentiation among mosquitoes is crucial for effective disease control because heterogeneity within vector species contributes to variability in malaria cases and allow fractions of populations to escape control efforts. To examine population structure and the potential impacts of recent large-scale control interventions, we have investigated the genomic patterns of differentiation in mosquitoes belonging to the group-a large taxonomic group that diverged ~3 Myr ago.

View Article and Find Full Text PDF

Explaining how and why reproductive isolation evolves and determining which forms of reproductive isolation have the largest impact on the process of population divergence are major goals in the study of speciation. By studying recent adaptive radiations in incompletely isolated taxa, it is possible to identify barriers involved at early divergence before other confounding barriers emerge after speciation is complete. Sibling species of the complex offer opportunities to provide insights into speciation mechanisms.

View Article and Find Full Text PDF

The two-spotted spider mite, , and the carmine spider mite, , are invasive and native species in China, respectively. Compared with , has expanded into most parts of China and has become the dominant species of spider mite since 1983, when it was first reported in China. However, the mechanism of the demographic conversion has not been illuminated.

View Article and Find Full Text PDF

The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes.

View Article and Find Full Text PDF

Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae).

View Article and Find Full Text PDF

Ecdysis, or molting behavior, in insects requires the sequential action of high levels of ecdysteroids, which induce accumulation of ecdysis-triggering hormone (ETH) in Inka cells, followed by low levels of ecdysteroids, permissive for the onset of the behavior. Here, we show that high ecdysteroid levels suppress the onset of the behavioral sequence by inhibiting the development of competence to secrete ETH. In pharate pupae of Manduca sexta, Inka cells in the epitracheal glands normally develop competence to secrete ETH in response to eclosion hormone (EH) 8 h before pupation.

View Article and Find Full Text PDF

An inhibitor of apoptosis (iap) gene homolog (Tn-iap) of the Trichoplusia ni granulovirus (TnGV) was cloned, sequenced and mapped on the genome of TnGV. Tn-iap encoded a protein (Tn-IAP) of 301 amino acids with a predicted molecular mass of 35 kDa. The Tn-IAP contained the two sequence motifs, BIRs and RING finger, characteristic of IAP proteins, and shared identities of 21-27% and similarities of 28-53% with IAP proteins of Cydia pomonella GV (Cp-IAP), Orgyia pseudotsugata multinucleocapsid nucleopolyhedrovirus (MNPV) (Op-IAP1, 3), Autographa californica MNPV (Ac-IAP1), Bombyx mori NPV (Bm-IAP1), Lymantria dispar MNPV (Ld-IAP3) and Buzura suppressaria single nucleocapsid NPV (Bs-IAP1).

View Article and Find Full Text PDF