10 results match your criteria: "Department of Engineering - University of Cambridge[Affiliation]"
Water Res
August 2023
Institute for Manufacturing, Department of Engineering - University of Cambridge, 17 Charles Babbage Rd, Cambridge CB3 0FS, UK. Electronic address:
Representing reality in a numerical model is complex. Conventionally, hydraulic models of water distribution networks are a tool for replicating water supply system behaviour through simulation by means of approximation of physical equations. A calibration process is mandatory to achieve plausible simulation results.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2021
Implantable electrophoretic drug delivery devices have shown promise for applications ranging from treating pathologies such as epilepsy and cancer to regulating plant physiology. Upon applying a voltage, the devices electrophoretically transport charged drug molecules across an ion-conducting membrane out to the local implanted area. This solvent-flow-free "dry" delivery enables controlled drug release with minimal pressure increase at the outlet.
View Article and Find Full Text PDFThe boom of plant phenotype highlights the need to measure the physiological characteristics of an individual plant. However, continuous real-time monitoring of a plant's internal physiological status remains challenging using traditional silicon-based sensor technology, due to the fundamental mismatch between rigid sensors and soft and curved plant surfaces. Here, the first flexible electronic sensing device is reported that can harmlessly cohabitate with the plant and continuously monitor its stem sap flow, a critical plant physiological characteristic for analyzing plant health, water consumption, and nutrient distribution.
View Article and Find Full Text PDFEpithelial, stem-cell derived organoids are ideal building blocks for tissue engineering, however, scalable and shape-controlled bio-assembly of epithelial organoids into larger and anatomical structures is yet to be achieved. Here, a robust organoid engineering approach, Multi-Organoid Patterning and Fusion (MOrPF), is presented to assemble individual airway organoids of different sizes into upscaled, scaffold-free airway tubes with predefined shapes. Multi-Organoid Aggregates (MOAs) undergo accelerated fusion in a matrix-depleted, free-floating environment, possess a continuous lumen, and maintain prescribed shapes without an exogenous scaffold interface.
View Article and Find Full Text PDFAdv Sci (Weinh)
July 2021
Advanced optical imaging techniques address important biological questions in neuroscience, where structures such as synapses are below the resolution limit of a conventional microscope. At the same time, microelectrode arrays (MEAs) are indispensable in understanding the language of neurons. Here, the authors show transparent MEAs capable of recording action potentials from neurons and compatible with advanced microscopy.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2021
NanoPhotonics Centre, Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK.
Plasmonic metafilms have been widely utilized to generate vivid colors, but making them both active and flexible simultaneously remains a great challenge. Here flexible active plasmonic metafilms constructed by printing electrochromic nanoparticles onto ultrathin metal films (<15 nm) are presented, offering low-power electricallydriven color switching. In conjunction with commercially available printing techniques, such flexible devices can be patterned using lithography-free approaches, opening up potential for fullyprinted electrochromic devices.
View Article and Find Full Text PDFAgriculture provides an unique opportunity for the development of robotic systems; robots must be developed which can operate in harsh conditions and in highly uncertain and unknown environments. One particular challenge is performing manipulation for autonomous robotic harvesting. This paper describes recent and current work to automate the harvesting of iceberg lettuce.
View Article and Find Full Text PDFHepatol Commun
December 2018
Health Education East of England (Deanery) Gastroenterology and Hepatology Specialist Training Programme Cambridge United Kingdom.
The UK government has proposed different low-carbon energy system options that lead to meeting its greenhouse gas emissions target of 80% reduction on 1990 levels by 2050. While these energy system options meet emission targets at feasible economic cost, water requirement for the deployment of the proposed energy technology mix is not adequately accounted for. This may become critical, as some of the proposed energy technologies are relatively more water-intensive, and could result in significant future water resource constraints.
View Article and Find Full Text PDF