9 results match your criteria: "Department of Earth and Environmental Sciences The University of Manchester Manchester UK.[Affiliation]"
Ecology & Evolution has published its first Registered Report and offers the perspective of the editor, author, and student on the publication process.
View Article and Find Full Text PDFEcologists have long debated the properties that confer stability to complex, species-rich ecological networks. Species-level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up-to-date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs.
View Article and Find Full Text PDFWhile the effect of drought on plant communities and their associated ecosystem functions is well studied, little research has considered how responses are modified by soil depth and depth heterogeneity. We conducted a mesocosm study comprising shallow and deep soils, and variable and uniform soil depths, and two levels of plant community composition, and exposed them to a simulated drought to test for interactive effects of these treatments on the resilience of carbon dioxide fluxes, plant functional traits, and soil chemical properties. We tested the hypotheses that: (a) shallow and variable depth soils lead to increased resistance and resilience of ecosystem functions to drought due to more exploitative plant trait strategies; (b) plant communities associated with intensively managed high fertility soils, will have more exploitative root traits than extensively managed, lower fertility plant communities.
View Article and Find Full Text PDFFood systems are significant sources of global greenhouse gas emissions (GHGE). Since emission intensity varies greatly between different foods, changing food choices towards those with lower GHGE could make an important contribution to mitigating climate change. Public engagement events offer an opportunity to communicate these multifaceted issues and raise awareness about the climate change impact of food choices.
View Article and Find Full Text PDFLoss of plant biodiversity can result in reduced abundance and diversity of associated species with implications for ecosystem functioning. In ecosystems low in plant species diversity, such as Neotropical mangrove forests, it is thought that genetic diversity within the dominant plant species could play an important role in shaping associated communities. Here, we used a manipulative field experiment to study the effects of maternal genotypic identity and genetic diversity of the red mangrove on the composition and richness of associated soil bacterial communities.
View Article and Find Full Text PDFMaternal effects (i.e. trans-generational plasticity) and soil legacies generated by drought and plant diversity can affect plant performance and alter nutrient cycling and plant community dynamics.
View Article and Find Full Text PDF