16 results match your criteria: "Department of Chemistry and the Howard Hughes Medical Institute[Affiliation]"
Clin Transl Med
December 2024
Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China.
Peptides
September 2023
Bacteriocins are a large family of bacterial peptides that have antimicrobial activity and potential applications as clinical antibiotics or food preservatives. Circular bacteriocins are a unique class of these biomolecules distinguished by a seamless circular topology, and are widely assumed to be ultra-stable based on this constraining structural feature. However, without quantitative studies of their susceptibility to defined thermal, chemical, and enzymatic conditions, their stability characteristics remain poorly understood, limiting their translational development.
View Article and Find Full Text PDFJ Bacteriol
May 2023
Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Phosphonothrixin is an herbicidal phosphonate natural product with an unusual, branched carbon skeleton. Bioinformatic analyses of the gene cluster, which is responsible for synthesis of the compound, suggest that early steps of the biosynthetic pathway, up to production of the intermediate 2,3-dihydroxypropylphosphonic acid (DHPPA) are identical to those of the unrelated phosphonate natural product valinophos. This conclusion was strongly supported by the observation of biosynthetic intermediates from the shared pathway in spent media from two phosphonothrixin producing strains.
View Article and Find Full Text PDFACS Chem Biol
January 2023
Department of Chemistry and the Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States.
Quantitative and base-resolution sequencing methods are critical to investigations of the biological functions of diverse RNA modifications. These methods may also be employed for clinical studies and clinical applications in the future. In this In Focus article, we introduce and discuss the development of Bisulfite-Induced Deletion sequencing (BID-seq) for quantitatively detecting mRNA pseudouridine (Ψ) modifications at base resolution.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
March 2022
Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China.
Aim: Diabetic nephropathy (DN) has become the most common cause of end-stage renal disease (ESRD) in most countries. Elucidating novel epigenetic contributors to DN can not only enhance our understanding of this complex disorder, but also lay the foundation for developing more effective monitoring tools and preventive interventions in the future, thus contributing to our ultimate goal of improving patient care.
Methods: The 5hmC-Seal, a highly selective, chemical labeling technique, was used to profile genome-wide 5-hydroxymethylcytosines (5hmC), a stable cytosine modification type marking gene activation, in circulating cell-free DNA (cfDNA) samples from a cohort of patients recruited at Zhongnan Hospital, including T2D patients with nephropathy (DN, n = 12), T2D patients with non-DN vascular complications (non-DN, n = 29), and T2D patients without any complication (controls, n = 14).
Annu Rev Biochem
June 2022
Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; email:
The past decade has seen impressive advances in understanding the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs). One of the most common modifications found in these natural products is macrocyclization, a strategy also used by medicinal chemists to improve metabolic stability and target affinity and specificity. Another tool of the peptide chemist, modification of the amides in a peptide backbone, has also been observed in RiPPs.
View Article and Find Full Text PDFCurr Opin Biotechnol
June 2021
Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States. Electronic address:
Natural products have historically been important lead sources for drug development, particularly to combat infectious diseases. Increasingly, their structurally complex scaffolds are also envisioned as leads for applications for which they did not evolve, an approach aided by engineering of new-to-nature analogs. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are promising candidates for bioengineering because they are genetically encoded and their biosynthetic enzymes display significant substrate tolerance.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2016
Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA. Electronic address:
The breadth of unprecedented enzymatic reactions performed during the formation of microbial natural products has continued to expand as new biosynthetic gene clusters are unearthed by genome mining. Enzymes that use aminoacyl-tRNA (aa-tRNA) outside of the translation machinery have been known for decades, and accounts of their use in natural product biosynthesis are just beginning to accumulate. This review will highlight the recent discoveries and advances in our mechanistic understanding of aa-tRNA-dependent enzymes that play key roles in the biosynthesis of a growing number of microbial natural products.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2015
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China. Electronic address:
Reactive oxygen species (ROS) are important factors mediating aging according to the free radical theory of aging. Few studies have systematically measured ROS levels in relationship to aging, partly due to the lack of tools for detection of specific ROS in live animals. By using the H₂O₂-specific fluorescence probe Peroxy Orange 1, we assayed the H₂O₂ levels of live Caenorhabditis elegans with 41 aging-related genes being individually knocked down by RNAi.
View Article and Find Full Text PDFMethods Enzymol
February 2013
Department of Chemistry and the Howard Hughes Medical Institute, Urbana, Illinois, USA.
The P-C bonds in phosphonate and phosphinate natural products endow them with a high level of stability and the ability to mimic phosphate esters and carboxylates. As such, they have a diverse range of enzyme targets that act on substrates containing such functionalities. Recent years have seen a renewed interest in discovery efforts focused on this class of compounds as well as in understanding their biosynthetic pathways.
View Article and Find Full Text PDFChem Commun (Camb)
May 2012
Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
A reaction-based strategy exploiting cobalt-mediated oxidative C-O bond cleavage affords a selective turn-on fluorescent probe for paramagnetic Co(2+) in water and in living cells.
View Article and Find Full Text PDFChem Commun (Camb)
September 2011
Department of Chemistry, Korea University, 1-Anamdong, Seoul, 136-701, Korea.
We report a two-photon fluorescent probe (PN1) that can be excited by 750 nm femto-second pulses, shows high photostability and negligible toxicity, and can visualize H(2)O(2) distribution in live cells and tissue by two-photon microscopy.
View Article and Find Full Text PDFChem Commun (Camb)
October 2010
Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
Lanthanide-based luminescent probes TPR1 and TPR2 were developed for the detection of hydrogen peroxide (H(2)O(2)) in living systems. The chemoselective reaction of these boronate-protected probes with H(2)O(2) resulted in an enhanced lanthanide sensitization and a 6-fold increase in luminescent intensity. TPR2 was utilized to measure the endogenous production of H(2)O(2) in RAW 264.
View Article and Find Full Text PDFJ Am Chem Soc
February 2010
Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
We present the synthesis, properties, and biological applications of Ratio-Coppersensor-1 (RCS1), a new water-soluble fluorescent sensor for ratiometric imaging of copper in living cells. RCS1 combines an asymmetric BODIPY reporter and thioether-based ligand receptor to provide high selectivity and sensitivity for Cu(+) over other biologically relevant metal ions, including Cu(2+) and Zn(2+), a ca. 20-fold fluorescence ratio change upon Cu(+) binding, and visible excitation and emission profiles compatible with standard fluorescence microscopy filter sets.
View Article and Find Full Text PDFJ Am Chem Soc
December 2009
Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
We present the synthesis and properties of Nickelsensor-1 (NS1), a new water-soluble, turn-on fluorescent sensor that is capable of selectively responding to Ni(2+) in aqueous solution and in living cells. NS1 combines a BODIPY chromophore and a mixed N/O/S receptor to provide good selectivity for Ni(2+) over a range of biologically abundant metal ions in aqueous solution. In addition to these characteristics, confocal microscopy experiments further show that NS1 can be delivered into living cells and report changes in intracellular Ni(2+) levels in a respiratory cell model.
View Article and Find Full Text PDFMethods Enzymol
June 2009
Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois, Urbana, Illinois, USA.
The lantibiotics are ribosomally synthesized and posttranslationally modified peptide antibiotics containing the thioether crosslinks lanthionine (Lan) and 3-methyllanthionine (MeLan) and typically also the dehydroamino acids dehydroalanine (Dha) and (Z)-dehydrobutyrine (Dhb). These modifications are formed by dehydration of Ser/Thr residues to produce the Dha and Dhb structures, and subsequent conjugate additions of Cys residues onto the unsaturated amino acids to form thioether rings (Lan and MeLan). Several of the enzymatic reactions involved in lantibiotic biosynthesis have been reconstituted in vitro in recent years and these systems as well as a general overview of lantibiotic biosynthesis are discussed in this chapter.
View Article and Find Full Text PDF