4 results match your criteria: "Department of Chemistry and Biochemistry of the University of California[Affiliation]"
J Org Chem
June 2006
Department of Chemistry and Biochemistry of the University of California, Santa Cruz, California 95064, USA.
The rates of hydrolysis of alpha-R-alpha-(methylthio)methylene Meldrum's acids (8-R with R = H, Me, Et, s-Bu, and t-Bu) were determined in basic and acidic solution in 50% DMSO-50% water (v/v) at 20 degrees C. In basic solution (KOH), nucleophilic attack to form a tetrahedral intermediate (T(OH)-) is rate limiting for all substrates (k1(OH)). In acidic solution (HCl) and at intermediate pH values (acetate buffers), water attack (k1(H2O) is rate limiting for 8-Me, 8-Et, and 8-s-Bu; the same is presumably the case for 8-t-Bu, but rates were too slow for accurate measurements at low pH.
View Article and Find Full Text PDFJ Org Chem
August 2004
Department of Chemistry and Biochemistry of the University of California, Santa Cruz, California 95064, USA.
The deprotonation of pentacarbonyl[(3-diethylamino-2,4-dimethyl)cyclobut-2-ene-1-ylidene]chromium (1d) and pentacarbonyl[(3-diethylamino-4-methyl-2-phenyl)cyclobut-2-ene-1-ylidene]chromium (1e) leads to antiaromatic conjugate anions by virtue of their being cyclobutadiene derivatives. Rate constants for the deprotonation of 1d and 1e by P2-Et and pKa values were determined in acetonitrile. Gas-phase B3LYP calculations of 1d, 1e, and their respective conjugate anions, using a generalized basis set, were also performed.
View Article and Find Full Text PDFJ Am Chem Soc
October 2003
Department of Chemistry and Biochemistry of the University of California, Santa Cruz, California 95064, USA.
A kinetic study of the reversible deprotonation of the rhenium carbene complexes 1H(+)(O), 1H(+)(S) and 2H(+)(O) by carboxylate ions, primary aliphatic and secondary alicyclic amines, water and OH(-) in 50% MeCN-50% water (v/v) at 25 degrees C is reported. These carbene complexes are of special interest because in their deprotonated form they represent derivatives of the aromatic heterocycles furan, thiophene and benzofuran. Intrinsic rate constants (k(o) for Delta G degrees = 0) determined from appropriate Brønsted plots for these rhenium carbene complexes and for the corresponding selenophene (1H(+)(Se)) and benzothiophene (2H(+)(S)) derivatives investigated earlier follow the orders furan < selenophene < thiophene and benzofuran less, similar benzothiophene.
View Article and Find Full Text PDFJ Am Chem Soc
December 2001
Department of Chemistry and Biochemistry of the University of California, Santa Cruz, California 95064, USA.
The pK(a) values of a cationic selenyl- (5H(+)) and a benzothienylcarbene complex (6H(+)) and rate constants for the reversible deprotonation of these complexes by water, carboxylate ions, primary aliphatic amines, secondary alicyclic amines (5H(+) only), and OH(-) (5H(+) only) were determined in 50% MeCN-50% water (v/v) at 25 degrees C. In comparison with neutral Fischer-type carbene complexes such as 1H, the cationic complexes 5H(+) and 6H(+) are much more acidic, and the intrinsic barriers to proton transfer are substantially higher. This paper discusses a variety of factors that contribute to these differences, with the most important ones being that 5H(+) and 6H(+) are cationic, which makes the C(5)H(5)(NO)(PPh(3))Re moiety a stronger pi-acceptor than the (CO)(5)M moieties, coupled with the fact that the deprotonated forms of 5H(+) and 6H(+ )are aromatic molecules.
View Article and Find Full Text PDF