44 results match your criteria: "Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology[Affiliation]"

An actinobacterial strain A23, isolated from adult ant Camponotus vagus collected in Ryazan region (Russia) and established as tetracenomycin X producer, was subjected to a polyphasic taxonomic study. Morphological characteristics of this strain included well-branched substrate mycelium and aerial hyphae fragmented into rod-shaped elements. Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that strain A23 was most closely related to Amycolatopsis pretoriensis DSM 44654.

View Article and Find Full Text PDF

Human Telomerase RNA Protein Encoded by Telomerase RNA is Involved in Metabolic Responses.

Front Cell Dev Biol

December 2021

Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.

Cell proliferation is associated with increased energy and nutrients consumption. Metabolism switch from oxidative phosphorylation to glycolysis and telomerase activity are induced during stimulation of proliferation, such as tumorigenesis, immune cell activation, and stem cell differentiation, among others. Telomerase RNA is one of the core components of the telomerase complex and participates in survival mechanisms that are activated under stress conditions.

View Article and Find Full Text PDF

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the 70S ribosome.

View Article and Find Full Text PDF

Substituted Furanocoumarins as Novel Class of Antibacterial Translation Inhibitors.

Comb Chem High Throughput Screen

August 2020

Lomonosov Moscow State University, Chemistry Dept, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.

Introduction: A variety of organic compounds has been reported to have antibacterial activity. However, antimicrobial resistance is one of the main problems of current anti-infective therapy, and the development of novel antibacterials is one of the main challenges of current drug discovery.

Methods: Using our previously developed dual-reporter High-Throughput Screening (HTS) platform, we identified a series of furanocoumarins as having high antibacterial activity.

View Article and Find Full Text PDF

Many pharmaceutical companies are avoiding the development of novel antibacterials due to a range of rational reasons and the high risk of failure. However, there is an urgent need for novel antibiotics especially against resistant bacterial strains. Available models suffer from many drawbacks and, therefore, are not applicable for scoring novel molecules with high structural diversity by their antibacterial potency.

View Article and Find Full Text PDF

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g.

View Article and Find Full Text PDF

Aim And Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity.

View Article and Find Full Text PDF

Identification of pyrrolo-pyridine derivatives as novel class of antibacterials.

Mol Divers

February 2020

Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3 GSP-1, Moscow, Russian Federation, 119991.

A series of 5-oxo-4H-pyrrolo[3,2-b]pyridine derivatives was identified as novel class of highly potent antibacterial agents during an extensive large-scale high-throughput screening (HTS) program utilizing a unique double-reporter system-pDualrep2. The construction of the reporter system allows us to perform visual inspection of the underlying mechanism of action due to two genes-Katushka2S and RFP-which encode the proteins with different imaging signatures. Antibacterial activity of the compounds was evaluated during the initial HTS round and subsequent rescreen procedure.

View Article and Find Full Text PDF

Although macrolides are known as excellent antibacterials, their medical use has been significantly limited due to the spread of bacterial drug resistance. Therefore, it is necessary to develop new potent macrolides to combat the emergence of drug-resistant pathogens. One of the key steps in rational drug design is the identification of chemical groups that mediate binding of the drug to its target and their subsequent derivatization to strengthen drug-target interactions.

View Article and Find Full Text PDF

Nybomycin-producing Streptomyces isolated from carpenter ant Camponotus vagus.

Biochimie

May 2019

Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia; Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. Electronic address:

A novel strain of Actinomycetes was isolated from the body of an ant (Camponotus vagus Scopoli) and its genetic and morphological properties were characterized. The 16S rDNA gene sequence analysis of the isolate revealed its high phylogenetic relationship with type strains of Streptomyces violaceochromogenes NBRC 13100. As a result of antimicrobial activity assessment, it was found that the fermentation broth of the isolated strain both inhibited the growth and induced the SOS response in E.

View Article and Find Full Text PDF

Nicking endonucleases (NEases) selectively cleave single DNA strands in double-stranded DNAs at a specific site. They are widely used in bioanalytical applications and in genome editing; however, the peculiarities of DNA-protein interactions for most of them are still poorly studied. Previously, it has been shown that the large subunit of heterodimeric restriction endonuclease BspD6I (Nt.

View Article and Find Full Text PDF

One of the promising directions of the combined approach is the design of dual-acting antibiotics - heterodimeric structures on the basis of antimicrobial agents of different classes. In this study a novel series of azithromycin-glycopeptide conjugates were designed and synthesized. The structures of the obtained compounds were confirmed using NMR spectroscopy and mass spectrometry data including MS/MS analysis.

View Article and Find Full Text PDF

Synthesis and evaluation of biological activity of benzoxaborole derivatives of azithromycin.

J Antibiot (Tokyo)

January 2019

Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia.

Novel benzoxaborole derivatives of azithromycin in which benzoxaborole residue is attached to the 4″-hydroxy-group of azithromycin have been synthesized. Antibacterial activity of synthesized derivatives in comparison with azithromycin was tested on a panel of Gram-positive and Gram-negative bacterial strains. All the investigated compounds demonstrated broad spectrum of antibacterial activity being in general more active against Gram-positive strains.

View Article and Find Full Text PDF

Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring.

View Article and Find Full Text PDF

Binding and Action of Amino Acid Analogs of Chloramphenicol upon the Bacterial Ribosome.

J Mol Biol

March 2018

Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA. Electronic address:

Antibiotic chloramphenicol (CHL) binds with a moderate affinity at the peptidyl transferase center of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving properties of this inhibitor, we explored ribosome binding and inhibitory activity of a number of amino acid analogs of CHL. The L-histidyl analog binds to the ribosome with the affinity exceeding that of CHL by 10 fold.

View Article and Find Full Text PDF

Peptides encoded by short open reading frames (sORFs) are usually defined as peptides ≤100 aa long. Usually sORFs were ignored by automatic genome annotation programs due to the high probability of false discovery. However, improved computational tools along with a high-throughput RIBO-seq approach identified a myriad of translated sORFs.

View Article and Find Full Text PDF

Whereas screening of the small-molecule metabolites produced by most cultivatable microorganisms often results in the rediscovery of known compounds, genome-mining programs allow researchers to harness much greater chemical diversity, and result in the discovery of new molecular scaffolds. Here we report the genome-guided identification of a new antibiotic, klebsazolicin (KLB), from Klebsiella pneumoniae that inhibits the growth of sensitive cells by targeting ribosomes. A ribosomally synthesized post-translationally modified peptide (RiPP), KLB is characterized by the presence of a unique N-terminal amidine ring that is essential for its activity.

View Article and Find Full Text PDF

The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates.

View Article and Find Full Text PDF

In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter.

View Article and Find Full Text PDF

Techniques for Screening Translation Inhibitors.

Antibiotics (Basel)

June 2016

Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.

The machinery of translation is one of the most common targets of antibiotics. The development and screening of new antibiotics usually proceeds by testing antimicrobial activity followed by laborious studies of the mechanism of action. High-throughput methods for new antibiotic screening based on antimicrobial activity have become routine; however, identification of molecular targets is usually a challenge.

View Article and Find Full Text PDF

Sea urchins are marine invertebrates of extreme diversity of life span. Red sea urchin S. franciscanus is among the longest living creatures of the Ocean.

View Article and Find Full Text PDF

[Common features of antibacterial compounds: an analysis of 104 compounds library].

Biomed Khim

April 2016

Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Mosсow, Russia.

Antibacterial compounds are one of the essential classes of clinically important drugs. High throughput screening allowed revealing potential antibiotics active towards any molecular target in bacterial cell. We used a library of 9820 organic compounds with highly diversified structures to screen for antibacterial activity.

View Article and Find Full Text PDF