26 results match your criteria: "Department of Chemistry University of York[Affiliation]"
We present a newly developed approach to characterize the sources of fine particulate matter (PM)-related premature deaths in Europe using the chemical transport model GEOS-Chem and its adjoint. The contributions of emissions from each individual country, species, and sector are quantified and mapped out at km scale. In 2015, total PM-related premature death is estimated to be 449,813 (257,846-722,138) in Europe, 59.
View Article and Find Full Text PDFAs electric vehicles become more widely used, there is a higher demand for lithium-ion batteries (LIBs) and hence a greater incentive to find better ways to recycle these at their end-of-life (EOL). This work focuses on the process of reclamation and re-use of cathode material from LIBs. Black mass containing mixed LiMnO and NiCoAlO from a Nissan Leaf pouch cell are recovered via two different recycling routes, shredding or disassembly.
View Article and Find Full Text PDFPLoS Biol
September 2022
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Primary familial brain calcification (PFBC) is characterised by abnormal deposits of calcium phosphate within various regions of the brain that are associated with severe cognitive impairments, psychiatric conditions, and movement disorders. Recent studies in diverse populations have shown a link between mutations in myogenesis-regulating glycosidase (MYORG) and the development of this disease. MYORG is a member of glycoside hydrolase (GH) family 31 (GH31) and, like the other mammalian GH31 enzyme α-glucosidase II, this enzyme is found in the lumen of the endoplasmic reticulum (ER).
View Article and Find Full Text PDFChemCatChem
December 2021
Imine reductases (IREDs) offer biocatalytic routes to chiral amines and have a natural preference for the NADPH cofactor. In previous work, we reported enzyme engineering of the ()-selective IRED from (NADH-IRED-) yielding a NADH-dependent variant with high catalytic efficiency. However, no IRED with NADH specificity and ()-selectivity in asymmetric reductions has yet been reported.
View Article and Find Full Text PDFOxidation of isoprene by nitrate radicals (NO) or by hydroxyl radicals (OH) under high NO conditions forms a substantial amount of organonitrates (ONs). ONs impact NO concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula CHNO are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe.
View Article and Find Full Text PDFJ Am Chem Soc
January 2022
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked -acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated.
View Article and Find Full Text PDFGeohealth
September 2021
Institute for Data, Systems, and Society Massachusetts Institute of Technology Cambridge MA USA.
In assessments of cancer risk from atmospheric polycyclic aromatic hydrocarbons (PAHs), scientists and regulators rarely consider the complex mixture of emitted compounds and degradation products, and they often represent the entire mixture using a single emitted compound-benzo[a]pyrene. Here, we show that benzo[a]pyrene is a poor indicator of PAH risk distribution and management: nearly 90% of cancer risk worldwide results from other PAHs, including unregulated degradation products of emitted PAHs. We develop and apply a global-scale atmospheric model and conduct health impact analyses to estimate human cancer risk from 16 PAHs and several of their N-PAH degradation products.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
March 2021
Institute of Chemistry Department of Organic and Bioorganic Chemistry University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria.
Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the ()- or the ()-enantiomer of phenylethanol.
View Article and Find Full Text PDFSulfur compounds are an important constituent of particulate matter, with impacts on climate and public health. While most sulfur observed in particulate matter has been assumed to be sulfate, laboratory experiments reveal that hydroxymethanesulfonate (HMS), an adduct formed by aqueous phase chemical reaction of dissolved HCHO and SO, may be easily misinterpreted in measurements as sulfate. Here we present observational and modeling evidence for a ubiquitous global presence of HMS.
View Article and Find Full Text PDFMarine cloud brightening (MCB) is proposed to offset global warming by emitting sea salt aerosols to the tropical marine boundary layer, which increases aerosol and cloud albedo. Sea salt aerosol is the main source of tropospheric reactive chlorine (Cl ) and bromine (Br ). The effects of additional sea salt on atmospheric chemistry have not been explored.
View Article and Find Full Text PDFChemistryOpen
May 2020
Green Chemistry Centre of Excellence, Department of Chemistry University of York Heslington YO10 5DD United Kingdom.
Deep eutectic solvents (DES) are one of the most promising green technologies to emerge in recent years given their combination of environmentally friendly credentials and useful functionalities. Considering the continued search for new DES - especially those that exemplify the aforementioned characteristics, we report the preparation of DES based on natural analogues of l-ascorbic acid for the first time. The onset of eutectic melting occurred at temperatures far below the melting point of the individual components and resulted in the generation of glass forming fluids with glass transition temperatures, viscosities and flow behavior that are comparable to similar systems.
View Article and Find Full Text PDFThe influence of various physical and chemical factors on the swelling of polystyrene and PEG based resins in greener organic solvents has been systematically investigated. In general, chemical factors: the nature of the functionality/linker and the degree of loading were found to have a far larger influence on the swelling of the resins than physical parameters such as bead size. The results are interpreted in terms of Hansen solubility parameters for the solvents and there is evidence that some solvents interact with the polymeric core of a resin whilst others interact with the functionality.
View Article and Find Full Text PDFAsymmetric reductive aminations are some of the most important reactions in the preparation of active pharmaceuticals, as chiral amines feature in many of the world's most important drugs. Although many enzymes have been applied to the synthesis of chiral amines, the development of reductive amination reactions that use enzymes is attractive, as it would permit the one-step transformation of readily available prochiral ketones into chiral amines of high optical purity. However, as most natural "reductive aminase" activities operate on keto acids, and many are able to use only ammonia as the amine donor, there is considerable scope for the engineering of natural enzymes for the reductive amination of ketones, and also for the preparation of secondary amines using alkylamines as donors.
View Article and Find Full Text PDF[NiFe] hydrogenases are electrocatalysts that oxidize H at a rapid rate without the need for precious metals. All membrane-bound [NiFe] hydrogenases (MBH) possess a histidine residue that points to the electron-transfer iron sulfur cluster closest ("proximal") to the [NiFe] H-binding active site. Replacement of this amino acid with alanine induces O sensitivity, and this has been attributed to the role of the histidine in enabling the reversible O-induced over-oxidation of the [FeSCys] proximal cluster possessed by all O-tolerant MBH.
View Article and Find Full Text PDFChemistryOpen
January 2018
Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom.
Fluorinated ligands have a variety of uses in chemistry and industry, but it is their medical applications as F-labelled positron emission tomography (PET) tracers where they are most visible. In this work, we illustrate the potential of using F-containing ligands as future magnetic resonance imaging (MRI) contrast agents and as probes in magnetic resonance spectroscopy studies by significantly increasing their magnetic resonance detectability through the signal amplification by reversible exchange (SABRE) hyperpolarization method. We achieve F SABRE polarization in a wide range of molecules, including those essential to medication, and analyze how their steric bulk, the substrate loading, polarization transfer field, pH, and rate of ligand exchange impact the efficiency of SABRE.
View Article and Find Full Text PDFThe synthesis of acridanes and related compounds through a Cu-catalysed radical cross-dehydrogenative coupling of simple 2-[2-(arylamino)aryl]malonates is reported. This method can be further streamlined to a one-pot protocol involving the in situ fomation of the 2-[2-(arylamino)aryl]malonate by α-arylation of diethyl malonate with 2-bromodiarylamines under Pd catalysis, followed by Cu-catalysed cyclisation.
View Article and Find Full Text PDFNat Chem Biol
June 2017
York Structural Biology Laboratory, Department of Chemistry University of York, York, UK.
O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value.
View Article and Find Full Text PDFGlutathione transferases (GSTs) are involved in many processes in plant biochemistry, with their best characterised role being the detoxification of xenobiotics through their conjugation with glutathione. GSTs have also been implicated in noncatalytic roles, including the binding and transport of small heterocyclic ligands such as indole hormones, phytoalexins and flavonoids. Although evidence for ligand binding and transport has been obtained using gene deletions and ligand binding studies on purified GSTs, there has been no structural evidence for the binding of relevant ligands in noncatalytic sites.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
April 2016
A highly efficient cap-exchange approach for preparing compact, dense polyvalent mannose-capped quantum dots (QDs) has been developed. The resulting QDs have been successfully used to probe multivalent interactions of HIV/Ebola receptors DC-SIGN and DC-SIGNR (collectively termed as DC-SIGN/R) using a sensitive, ratiometric Förster resonance energy transfer (FRET) assay. The QD probes specifically bind DC-SIGN, but not its closely related receptor DC-SIGNR, which is further confirmed by its specific blocking of DC-SIGN engagement with the Ebola virus glycoprotein.
View Article and Find Full Text PDFOrg Biomol Chem
February 2015
B.D. Summers, M. Omar, T. Ronson, Dr G. Grogan, York Structural Biology Laboratory, Department of Chemistry University of York, York YO10 5DD, UK.
The Baeyer-Villiger monooxygenase (BVMO) 'MO14' from Rhodococcus jostii RHA1, is an enantioselective BVMO that catalyses the resolution of the model ketone substrate bicyclo[3.2.0]hept-2-en-6-one to the (1S,5R)-2-oxa lactone and the residual (1S,5R)-substrate enantiomer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2001
Department of Chemistry University of York Heslington, York YO10 5DD (UK).
Angew Chem Int Ed Engl
October 2001
Bruker UK Limited, Banner Lane, Coventry CV4 9GH (UK).
Structure
September 1999
Department of Molecular Biology Uppsala University Biomedical Center Box 590, S-751 24, Uppsala, Sweden Structural Biology Laboratory Department of Chemistry University of York Heslington, York, UK YO10 5DD,.
Background: Glyoxalase II, the second of two enzymes in the glyoxalase system, is a thiolesterase that catalyses the hydrolysis of S-D-lactoylglutathione to form glutathione and D-lactic acid.
Results: The structure of human glyoxalase II was solved initially by single isomorphous replacement with anomalous scattering and refined at a resolution of 1.9 A.