3 results match your criteria: "Department of Chemistry University of Louisville[Affiliation]"

Background Histidyl dipeptides such as carnosine are present in a micromolar to millimolar range in mammalian hearts. These dipeptides facilitate glycolysis by proton buffering. They form conjugates with reactive aldehydes, such as acrolein, and attenuate myocardial ischemia-reperfusion injury.

View Article and Find Full Text PDF

BACKGROUND Myocardial ischemia reperfusion (I/R) injury is associated with complex pathophysiological changes characterized by pH imbalance, the accumulation of lipid peroxidation products acrolein and 4-hydroxy -2-nonenal, and the depletion of ATP levels. Cardioprotective interventions, designed to address individual mediators of I/R injury, have shown limited efficacy. The recently identified enzyme ATPGD1 (Carnosine Synthase), which synthesizes histidyl dipeptides such as carnosine, has the potential to counteract multiple effectors of I/R injury by buffering intracellular pH and quenching lipid peroxidation products and may protect against I/R injury METHODS AND RESULTS We report here that β-alanine and carnosine feeding enhanced myocardial carnosine levels and protected the heart against I/R injury.

View Article and Find Full Text PDF

A subtype of non-small cell lung cancer, bronchioalveolar adenocarcinoma (BAC), is more prevalent in Asian female non-smokers, and is more likely to respond to treatment with tyrosine kinase inhibitors such as erlotinib and gefitinib. Nuclear magnetic resonance and mass spectrometry-based metabolomic analysis of extracts from two different lung lesions and surrounding non-cancerous tissues of a BAC patient showed novel protein and phospholipid-associated metabolic differences that correlated with tumor development as well as PET and erlotinib sensitivity.

View Article and Find Full Text PDF